色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

如何理解整個數據倉庫建設體系?

數據分析與開發 ? 來源:五分鐘學大數據 ? 作者:五分鐘學大數據 ? 2021-04-26 11:06 ? 次閱讀

數據倉庫的基本概念數據倉庫概念:

英文名稱為Data Warehouse,可簡寫為DW或DWH。數據倉庫的目的是構建面向分析的集成化數據環境,為企業提供決策支持(Decision Support)。它出于分析性報告和決策支持目的而創建。

數據倉庫本身并不“生產”任何數據,同時自身也不需要“消費”任何的數據,數據來源于外部,并且開放給外部應用,這也是為什么叫“倉庫”,而不叫“工廠”的原因。

基本特征:

數據倉庫是面向主題的、集成的、非易失的和時變的數據集合,用以支持管理決策。

面向主題:

傳統數據庫中,最大的特點是面向應用進行數據的組織,各個業務系統可能是相互分離的。而數據倉庫則是面向主題的。主題是一個抽象的概念,是較高層次上企業信息系統中的數據綜合、歸類并進行分析利用的抽象。在邏輯意義上,它是對應企業中某一宏觀分析領域所涉及的分析對象。

集成性:

通過對分散、獨立、異構的數據庫數據進行抽取、清理、轉換和匯總便得到了數據倉庫的數據,這樣保證了數據倉庫內的數據關于整個企業的一致性。

數據倉庫中的綜合數據不能從原有的數據庫系統直接得到。因此在數據進入數據倉庫之前,必然要經過統一與綜合,這一步是數據倉庫建設中最關鍵、最復雜的一步,所要完成的工作有:

要統一源數據中所有矛盾之處,如字段的同名異義、異名同義、單位不統一、字長不一致,等等。

進行數據綜合和計算。數據倉庫中的數據綜合工作可以在從原有數據庫抽取數據時生成,但許多是在數據倉庫內部生成的,即進入數據倉庫以后進行綜合生成的。

下圖說明一個保險公司綜合數據的簡單處理過程,其中數據倉庫中與“保險” 主題有關的數據來自于多個不同的操作型系統。這些系統內部數據的命名可能不同,數據格式也可能不同。把不同來源的數據存儲到數據倉庫之前,需要去除這些不一致。

4ad88f0e-a5e8-11eb-aece-12bb97331649.png

數倉主題

非易失性(不可更新性)

數據倉庫的數據反映的是一段相當長的時間內歷史數據的內容,是不同時點的數據庫快照的集合,以及基于這些快照進行統計、綜合和重組的導出數據。

數據非易失性主要是針對應用而言。數據倉庫的用戶對數據的操作大多是數據查詢或比較復雜的挖掘,一旦數據進入數據倉庫以后,一般情況下被較長時間保留。數據倉庫中一般有大量的查詢操作,但修改和刪除操作很少。因此,數據經加工和集成進入數據倉庫后是極少更新的,通常只需要定期的加載和更新。

時變性

數據倉庫包含各種粒度的歷史數據。數據倉庫中的數據可能與某個特定日期、星期、月份、季度或者年份有關。數據倉庫的目的是通過分析企業過去一段時間業務的經營狀況,挖掘其中隱藏的模式。雖然數據倉庫的用戶不能修改數據,但并不是說數據倉庫的數據是永遠不變的。分析的結果只能反映過去的情況,當業務變化后,挖掘出的模式會失去時效性。因此數據倉庫的數據需要更新,以適應決策的需要。從這個角度講,數據倉庫建設是一個項目,更是一個過程。數據倉庫的數據隨時間的變化表現在以下幾個方面:

(1)數據倉庫的數據時限一般要遠遠長于操作型數據的數據時限。

(2)操作型系統存儲的是當前數據,而數據倉庫中的數據是歷史數據。

(3)數據倉庫中的數據是按照時間順序追加的,它們都帶有時間屬性。

1. 數據倉庫與數據庫的區別數據庫與數據倉庫的區別實際講的是 OLTP 與 OLAP 的區別。

操作型處理,叫聯機事務處理 OLTP(On-Line Transaction Processing,),也可以稱面向交易的處理系統,它是針對具體業務在數據庫聯機的日常操作,通常對少數記錄進行查詢、修改。用戶較為關心操作的響應時間、數據的安全性、完整性和并發支持的用戶數等問題。傳統的數據庫系統作為數據管理的主要手段,主要用于操作型處理,像Mysql,Oracle等關系型數據庫一般屬于OLTP。

分析型處理,叫聯機分析處理 OLAP(On-Line Analytical Processing)一般針對某些主題的歷史數據進行分析,支持管理決策。

首先要明白,數據倉庫的出現,并不是要取代數據庫。數據庫是面向事務的設計,數據倉庫是面向主題設計的。數據庫一般存儲業務數據,數據倉庫存儲的一般是歷史數據。

數據庫設計是盡量避免冗余,一般針對某一業務應用進行設計,比如一張簡單的User表,記錄用戶名、密碼等簡單數據即可,符合業務應用,但是不符合分析。數據倉庫在設計是有意引入冗余,依照分析需求,分析維度、分析指標進行設計。

數據庫是為捕獲數據而設計,數據倉庫是為分析數據而設計。

以銀行業務為例。數據庫是事務系統的數據平臺,客戶在銀行做的每筆交易都會寫入數據庫,被記錄下來,這里,可以簡單地理解為用數據庫記賬。數據倉庫是分析系統的數據平臺,它從事務系統獲取數據,并做匯總、加工,為決策者提供決策的依據。比如,某銀行某分行一個月發生多少交易,該分行當前存款余額是多少。如果存款又多,消費交易又多,那么該地區就有必要設立ATM了。

顯然,銀行的交易量是巨大的,通常以百萬甚至千萬次來計算。事務系統是實時的,這就要求時效性,客戶存一筆錢需要幾十秒是無法忍受的,這就要求數據庫只能存儲很短一段時間的數據。而分析系統是事后的,它要提供關注時間段內所有的有效數據。這些數據是海量的,匯總計算起來也要慢一些,但是,只要能夠提供有效的分析數據就達到目的了。

數據倉庫,是在數據庫已經大量存在的情況下,為了進一步挖掘數據資源、為了決策需要而產生的,它決不是所謂的“大型數據庫”。

2. 數據倉庫分層架構按照數據流入流出的過程,數據倉庫架構可分為:源數據、數據倉庫、數據應用

數據倉庫的數據來源于不同的源數據,并提供多樣的數據應用,數據自下而上流入數據倉庫后向上層開放應用,而數據倉庫只是中間集成化數據管理的一個平臺。

源數據:此層數據無任何更改,直接沿用外圍系統數據結構和數據,不對外開放;為臨時存儲層,是接口數據的臨時存儲區域,為后一步的數據處理做準備。

數據倉庫:也稱為細節層,DW層的數據應該是一致的、準確的、干凈的數據,即對源系統數據進行了清洗(去除了雜質)后的數據。

數據應用:前端應用直接讀取的數據源;根據報表、專題分析需求而計算生成的數據。

數據倉庫從各數據源獲取數據及在數據倉庫內的數據轉換和流動都可以認為是ETL(抽取Extra, 轉化Transfer, 裝載Load)的過程,ETL是數據倉庫的流水線,也可以認為是數據倉庫的血液,它維系著數據倉庫中數據的新陳代謝,而數據倉庫日常的管理和維護工作的大部分精力就是保持ETL的正常和穩定。

那么為什么要數據倉庫進行分層呢?

用空間換時間,通過大量的預處理來提升應用系統的用戶體驗(效率),因此數據倉庫會存在大量冗余的數據;不分層的話,如果源業務系統的業務規則發生變化將會影響整個數據清洗過程,工作量巨大。

通過數據分層管理可以簡化數據清洗的過程,因為把原來一步的工作分到了多個步驟去完成,相當于把一個復雜的工作拆成了多個簡單的工作,把一個大的黑盒變成了一個白盒,每一層的處理邏輯都相對簡單和容易理解,這樣我們比較容易保證每一個步驟的正確性,當數據發生錯誤的時候,往往我們只需要局部調整某個步驟即可。

3. 數據倉庫元數據的管理元數據(Meta Date),主要記錄數據倉庫中模型的定義、各層級間的映射關系、監控數據倉庫的數據狀態及ETL的任務運行狀態。一般會通過元數據資料庫(Metadata Repository)來統一地存儲和管理元數據,其主要目的是使數據倉庫的設計、部署、操作和管理能達成協同和一致。

元數據是數據倉庫管理系統的重要組成部分,元數據管理是企業級數據倉庫中的關鍵組件,貫穿數據倉庫構建的整個過程,直接影響著數據倉庫的構建、使用和維護。

構建數據倉庫的主要步驟之一是ETL。這時元數據將發揮重要的作用,它定義了源數據系統到數據倉庫的映射、數據轉換的規則、數據倉庫的邏輯結構、數據更新的規則、數據導入歷史記錄以及裝載周期等相關內容。數據抽取和轉換的專家以及數據倉庫管理員正是通過元數據高效地構建數據倉庫。

用戶在使用數據倉庫時,通過元數據訪問數據,明確數據項的含義以及定制報表。

數據倉庫的規模及其復雜性離不開正確的元數據管理,包括增加或移除外部數據源,改變數據清洗方法,控制出錯的查詢以及安排備份等。

元數據可分為技術元數據和業務元數據。技術元數據為開發和管理數據倉庫的IT 人員使用,它描述了與數據倉庫開發、管理和維護相關的數據,包括數據源信息、數據轉換描述、數據倉庫模型、數據清洗與更新規則、數據映射和訪問權限等。而業務元數據為管理層和業務分析人員服務,從業務角度描述數據,包括商務術語、數據倉庫中有什么數據、數據的位置和數據的可用性等,幫助業務人員更好地理解數據倉庫中哪些數據是可用的以及如何使用。

由上可見,元數據不僅定義了數據倉庫中數據的模式、來源、抽取和轉換規則等,而且是整個數據倉庫系統運行的基礎,元數據把數據倉庫系統中各個松散的組件聯系起來,組成了一個有機的整體。

數倉建模方法數據倉庫的建模方法有很多種,每一種建模方法代表了哲學上的一個觀點,代表了一種歸納、概括世界的一種方法。常見的有 范式建模法、維度建模法、實體建模法等,每種方法從本質上將是從不同的角度看待業務中的問題。

1. 范式建模法(Third Normal Form,3NF)范式建模法其實是我們在構建數據模型常用的一個方法,該方法的主要由 Inmon 所提倡,主要解決關系型數據庫的數據存儲,利用的一種技術層面上的方法。目前,我們在關系型數據庫中的建模方法,大部分采用的是三范式建模法。

范式 是符合某一種級別的關系模式的集合。構造數據庫必須遵循一定的規則,而在關系型數據庫中這種規則就是范式,這一過程也被稱為規范化。目前關系數據庫有六種范式:第一范式(1NF)、第二范式(2NF)、第三范式(3NF)、Boyce-Codd范式(BCNF)、第四范式(4NF)和第五范式(5NF)。

在數據倉庫的模型設計中,一般采用第三范式。一個符合第三范式的關系必須具有以下三個條件 :

每個屬性值唯一,不具有多義性 ;

每個非主屬性必須完全依賴于整個主鍵,而非主鍵的一部分 ;

每個非主屬性不能依賴于其他關系中的屬性,因為這樣的話,這種屬性應該歸到其他關系中去。

根據 Inmon 的觀點,數據倉庫模型的建設方法和業務系統的企業數據模型類似。在業務系統中,企業數據模型決定了數據的來源,而企業數據模型也分為兩個層次,即主題域模型和邏輯模型。同樣,主題域模型可以看成是業務模型的概念模型,而邏輯模型則是域模型在關系型數據庫上的實例化。

2. 維度建模法(Dimensional Modeling)維度模型是數據倉庫領域另一位大師Ralph Kimall所倡導,他的《數據倉庫工具箱》是數據倉庫工程領域最流行的數倉建模經典。維度建模以分析決策的需求出發構建模型,構建的數據模型為分析需求服務,因此它重點解決用戶如何更快速完成分析需求,同時還有較好的大規模復雜查詢的響應性能。

典型的代表是我們比較熟知的星形模型(Star-schema),以及在一些特殊場景下適用的雪花模型(Snow-schema)。

維度建模中比較重要的概念就是 事實表(Fact table)和維度表(Dimension table)。其最簡單的描述就是,按照事實表、維度表來構建數據倉庫、數據集市。

目前在互聯網公司最常用的建模方法就是維度建模,稍后將重點講解。

3. 實體建模法(Entity Modeling)實體建模法并不是數據倉庫建模中常見的一個方法,它來源于哲學的一個流派。從哲學的意義上說,客觀世界應該是可以細分的,客觀世界應該可以分成由一個個實體,以及實體與實體之間的關系組成。那么我們在數據倉庫的建模過程中完全可以引入這個抽象的方法,將整個業務也可以劃分成一個個的實體,而每個實體之間的關系,以及針對這些關系的說明就是我們數據建模需要做的工作。

雖然實體法粗看起來好像有一些抽象,其實理解起來很容易。即我們可以將任何一個業務過程劃分成 3 個部分,實體,事件,說明,如下圖所示:

4b4d8e26-a5e8-11eb-aece-12bb97331649.png

實體建模

上圖表述的是一個抽象的含義,如果我們描述一個簡單的事實:“小明開車去學校上學”。以這個業務事實為例,我們可以把“小明”,“學?!笨闯墒且粋€實體,“上學”描述的是一個業務過程,我們在這里可以抽象為一個具體“事件”,而“開車去”則可以看成是事件“上學”的一個說明。

維度建模維度建模是目前應用較為廣泛的,專門應用于分析型數據庫、數據倉庫、數據集市建模的方法。數據集市可以理解為是一種“小型數據倉庫”。

1. 維度建模中表的類型1. 事實表

發生在現實世界中的操作型事件,其所產生的可度量數值,存儲在事實表中。從最低的粒度級別來看,事實表行對應一個度量事件,反之亦然。

事實表表示對分析主題的度量。比如一次購買行為我們就可以理解為是一個事實。

事實與維度

圖中的訂單表就是一個事實表,你可以理解他就是在現實中發生的一次操作型事件,我們每完成一個訂單,就會在訂單中增加一條記錄。事實表的特征:表里沒有存放實際的內容,他是一堆主鍵的集合,這些ID分別能對應到維度表中的一條記錄。事實表包含了與各維度表相關聯的外鍵,可與維度表關聯。事實表的度量通常是數值類型,且記錄數會不斷增加,表數據規模迅速增長。

明細表(寬表):

事實表的數據中,有些屬性共同組成了一個字段(糅合在一起),比如年月日時分秒構成了時間,當需要根據某一屬性進行分組統計的時候,需要截取拼接之類的操作,效率極低。如:

local_time

2021-03-18 0642

為了分析方便,可以事實表中的一個字段切割提取多個屬性出來構成新的字段,因為字段變多了,所以稱為寬表,原來的成為窄表。

將上述的local_time字段擴展為如下6個字段:

yearmonthdayhourms

20210318063142

又因為寬表的信息更加清晰明細,所以也可以稱之為明細表。

2.維度表

每個維度表都包含單一的主鍵列。維度表的主鍵可以作為與之關聯的任何事實表的外鍵,當然,維度表行的描述環境應與事實表行完全對應。維度表通常比較寬,是扁平型非規范表,包含大量的低粒度的文本屬性。

維度表示你要對數據進行分析時所用的一個量,比如你要分析產品銷售情況, 你可以選擇按類別來進行分析,或按區域來分析。每個類別就構成一個維度。事實表的圖中的用戶表、商家表、時間表這些都屬于維度表,這些表都有一個唯一的主鍵,然后在表中存放了詳細的數據信息。

總的說來,在數據倉庫中不需要嚴格遵守規范化設計原則。因為數據倉庫的主導功能就是面向分析,以查詢為主,不涉及數據更新操作。事實表的設計是以能夠正確記錄歷史信息為準則,維度表的設計是以能夠以合適的角度來聚合主題內容為準則。

2. 維度建模三種模式1. 星型模式

星形模式(Star Schema)是最常用的維度建模方式。星型模式是以事實表為中心,所有的維度表直接連接在事實表上,像星星一樣。星形模式的維度建模由一個事實表和一組維表成,且具有以下特點:a. 維表只和事實表關聯,維表之間沒有關聯;b. 每個維表主鍵為單列,且該主鍵放置在事實表中,作為兩邊連接的外鍵;c. 以事實表為核心,維表圍繞核心呈星形分布;

2. 雪花模式

雪花模式(Snowflake Schema)是對星形模式的擴展。雪花模式的維度表可以擁有其他維度表的,雖然這種模型相比星型更規范一些,但是由于這種模型不太容易理解,維護成本比較高,而且性能方面需要關聯多層維表,性能也比星型模型要低。所以一般不是很常用

3.星座模式

星座模式是星型模式延伸而來,星型模式是基于一張事實表的,而星座模式是基于多張事實表的,而且共享維度信息。前面介紹的兩種維度建模方法都是多維表對應單事實表,但在很多時候維度空間內的事實表不止一個,而一個維表也可能被多個事實表用到。在業務發展后期,絕大部分維度建模都采用的是星座模式。

3. 維度建模過程我們知道維度建模的表類型有事實表,維度表;模式有星形模型,雪花模型,星座模型這些概念了,但是實際業務中,給了我們一堆數據,我們怎么拿這些數據進行數倉建設呢,數倉工具箱作者根據自身60多年的實際業務經驗,給我們總結了如下四步,請務必記??!

數倉工具箱中的維度建模四步走:

4b89dfa2-a5e8-11eb-aece-12bb97331649.png

維度建模四步走

請牢記以上四步,不管什么業務,就按照這個步驟來,順序不要搞亂,因為這四步是環環相扣,步步相連。下面詳細拆解下每個步驟怎么做

1、選擇業務過程

維度建模是緊貼業務的,所以必須以業務為根基進行建模,那么選擇業務過程,顧名思義就是在整個業務流程中選取我們需要建模的業務,根據運營提供的需求及日后的易擴展性等進行選擇業務。比如商城,整個商城流程分為商家端,用戶端,平臺端,運營需求是總訂單量,訂單人數,及用戶的購買情況等,我們選擇業務過程就選擇用戶端的數據,商家及平臺端暫不考慮。業務選擇非常重要,因為后面所有的步驟都是基于此業務數據展開的。

2、聲明粒度

先舉個例子:對于用戶來說,一個用戶有一個身份證號,一個戶籍地址,多個手機號,多張銀行卡,那么與用戶粒度相同的粒度屬性有身份證粒度,戶籍地址粒度,比用戶粒度更細的粒度有手機號粒度,銀行卡粒度,存在一對一的關系就是相同粒度。為什么要提相同粒度呢,因為維度建模中要求我們,在同一事實表中,必須具有相同的粒度,同一事實表中不要混用多種不同的粒度,不同的粒度數據建立不同的事實表。并且從給定的業務過程獲取數據時,強烈建議從關注原子粒度開始設計,也就是從最細粒度開始,因為原子粒度能夠承受無法預期的用戶查詢。但是上卷匯總粒度對查詢性能的提升很重要的,所以對于有明確需求的數據,我們建立針對需求的上卷匯總粒度,對需求不明朗的數據我們建立原子粒度。

3、確認維度

維度表是作為業務分析的入口和描述性標識,所以也被稱為數據倉庫的“靈魂”。在一堆的數據中怎么確認哪些是維度屬性呢,如果該列是對具體值的描述,是一個文本或常量,某一約束和行標識的參與者,此時該屬性往往是維度屬性,數倉工具箱中告訴我們牢牢掌握事實表的粒度,就能將所有可能存在的維度區分開,并且要確保維度表中不能出現重復數據,應使維度主鍵唯一

4、確認事實

事實表是用來度量的,基本上都以數量值表示,事實表中的每行對應一個度量,每行中的數據是一個特定級別的細節數據,稱為粒度。維度建模的核心原則之一是同一事實表中的所有度量必須具有相同的粒度。這樣能確保不會出現重復計算度量的問題。有時候往往不能確定該列數據是事實屬性還是維度屬性。記住最實用的事實就是數值類型和可加類事實。所以可以通過分析該列是否是一種包含多個值并作為計算的參與者的度量,這種情況下該列往往是事實。

實際業務中數倉分層數倉分層要結合公司業務進行,并且需要清晰明確各層職責,要保證數據層的穩定又要屏蔽對下游影響,一般采用如下分層結構:

4b938cfa-a5e8-11eb-aece-12bb97331649.png

數據分層架構

數據層具體實現使用四張圖說明每層的具體實現

數據源層ODS

數據源層主要將各個業務數據導入到大數據平臺,作為業務數據的快照存儲。

數據明細層DW

事實表中的每行對應一個度量,每行中的數據是一個特定級別的細節數據,稱為粒度。要記住的是同一事實表中的所有度量必須具有相同的粒度。

維度表一般都是單一主鍵,少數是聯合主鍵,注意維度表不要出現重復數據,否則和事實表關聯會出現數據發散問題。

有時候往往不能確定該列數據是事實屬性還是維度屬性。記住最實用的事實就是數值類型和可加類事實。所以可以通過分析該列是否是一種包含多個值并作為計算的參與者的度量,這種情況下該列往往是事實;如果該列是對具體值的描述,是一個文本或常量,某一約束和行標識的參與者,此時該屬性往往是維度屬性。但是還是要結合業務進行最終判斷是維度還是事實。

數據輕度匯總層DM

此層命名為輕匯總層,就代表這一層已經開始對數據進行匯總,但是不是完全匯總,只是對相同粒度的數據進行關聯匯總,不同粒度但是有關系的數據也可進行匯總,此時需要將粒度通過聚合等操作進行統一。

數據應用層APP

數據應用層的表就是提供給用戶使用的,數倉建設到此就接近尾聲了,接下來就根據不同的需求進行不同的取數,如直接進行報表展示,或提供給數據分析的同事所需的數據,或其他的業務支撐。

最后技術是為業務服務的,業務是為公司創造價值的,離開業務的技術是無意義的。所以數倉的建設與業務是息息相關的,公司的業務不同,數倉的建設也是不同的,只有適合的才是最好的。

原文標題:萬字詳解整個數據倉庫建設體系

文章出處:【微信公眾號:數據分析與開發】歡迎添加關注!文章轉載請注明出處。

責任編輯:haq

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 數據
    +關注

    關注

    8

    文章

    7006

    瀏覽量

    88948

原文標題:萬字詳解整個數據倉庫建設體系

文章出處:【微信號:DBDevs,微信公眾號:數據分析與開發】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    戴爾數據湖倉助力企業數字化轉型

    在數字化轉型的浪潮下,企業正面臨著前所未有的數據挑戰。從傳統的結構化數據到如今的非結構化數據、半結構化數據,每一種類型都對企業的存儲和分析能力提出了更高的要求。面對這些變化,傳統的
    的頭像 發表于 12-20 09:31 ?88次閱讀

    數據倉庫數據庫的主要區別

    數據倉庫數據庫是兩個在信息技術領域中常見的概念,它們在數據管理和分析方面發揮著重要作用。盡管它們在某些方面有相似之處,但它們在設計、目的和功能上存在顯著差異。本文將介紹數據倉庫
    的頭像 發表于 07-05 14:57 ?520次閱讀

    亞馬遜豪擲千億美元,未來十年加速數據中心建設

    近日,全球電商巨頭亞馬遜宣布了一項宏偉的投資計劃,擬在未來十年內投資超過1000億美元用于數據中心建設。這一決策標志著亞馬遜對云計算和人工智能領域的深度布局與堅定承諾,其投資規模之大,遠超以往在零售倉庫
    的頭像 發表于 07-02 10:40 ?556次閱讀

    ESP32-C3模塊通過GPIO發送數據到FPGA,這個數據是解包后的核心數據,還是數據包的形式?

    大家好,我想問一下ESP32-C3模塊通過GPIO發送數據到FPGA,這個數據是解包后的核心數據,還是數據包的形式。關于使用FPGA對無線數據
    發表于 06-07 07:17

    什么是數據湖?數據湖和數據倉庫有什么區別?

    從本質上說,數據湖就是一個信息資源庫。人們常常將數據湖與數據倉庫混為一談,但兩者在架構和滿足的業務需求上都不一樣。尤其是,隨著社交媒體數據、物聯網機器
    的頭像 發表于 05-20 12:38 ?606次閱讀
    什么是<b class='flag-5'>數據</b>湖?<b class='flag-5'>數據</b>湖和<b class='flag-5'>數據倉庫</b>有什么區別?

    PLC數據采集系統在糧食中轉倉庫的應用

    。 為建設糧食中轉倉庫的信息化管理系統,數之能基于PLC數據采集平臺實現氣墊機、斗提機、刮板機、除塵器、空壓機、稱重傳感器等設備的遠程監控,并將設備異常故障數據實時通知到管理人員手中,
    的頭像 發表于 05-17 15:54 ?319次閱讀

    蜂窩物聯智慧倉庫理解決方案的幾個關鍵組成

    蜂窩物聯智慧倉庫解決方案是利用現代信息技術,如物聯網、云計算、人工智能等,對庫房或倉庫的管理進行智能化升級,以提高管理效率、減少人為錯誤、保障物資安全、提升服務質量。下面是智慧庫房/倉庫理解
    的頭像 發表于 05-17 14:15 ?327次閱讀
    蜂窩物聯智慧<b class='flag-5'>倉庫</b>管<b class='flag-5'>理解</b>決方案的幾個關鍵組成

    數據中臺、數據倉庫數據治理與主數據的定位與差異

    在數字化時代,大數據已經成為企業運營和決策的重要資產。為了更好地管理和利用這些數據數據中臺、數據倉庫數據治理和主
    的頭像 發表于 05-08 10:40 ?431次閱讀

    行業首個、規模最大的晶科能源智能立體倉庫在海寧基地正式投產

    近日,全球極具創新力的光伏、儲能企業晶科能源宣布,公司基于數字化、智能化系統建設目標投資建設的首座智能立體倉庫在海寧基地正式投產。
    的頭像 發表于 04-02 09:31 ?483次閱讀

    晶振掌控著整個數字世界的節奏

    在我們的日常生活中,智能電子設備無處不在,而在這個數字化的世界中,有一個小小的頻率元器件,它以微弱的震動,掌控著整個數字世界的節奏,它就是晶振,一個以頻率為武器的魔法師,晶振這個看似平凡的頻率元器件
    的頭像 發表于 03-15 11:03 ?343次閱讀
    晶振掌控著<b class='flag-5'>整個數</b>字世界的節奏

    倉儲倉庫廣播-倉儲倉庫無線應急廣播對講智能管理系統建設重點解析

    海特偉業倉儲倉庫無線應急對講廣播系統是以當前主流的物聯網傳輸為核心,打造的4G無線傳輸廣播管理應用平臺,是采用云計算的模型分布部署實施的廣播系統。
    的頭像 發表于 03-06 15:59 ?585次閱讀
    倉儲<b class='flag-5'>倉庫</b>廣播-倉儲<b class='flag-5'>倉庫</b>無線應急廣播對講智能管理系統<b class='flag-5'>建設</b>重點解析

    《RVfpga:理解計算機體系結構》3.0 版本更新上線

    《RVfpga:理解計算機體系結構》3.0版本更新上線,掃碼進入官網注冊申請獲取。《RVfpga:理解計算機體系結構》(以下簡稱“《RVfpga》”)是Imagination推出的完整
    的頭像 發表于 01-18 08:27 ?786次閱讀
    《RVfpga:<b class='flag-5'>理解</b>計算機<b class='flag-5'>體系</b>結構》3.0 版本更新上線

    構建高效數據生態:數據庫、數據倉庫、數據湖、大數據平臺與數據中臺解析_光點科技

    在數字化的浪潮中,一套高效的數據管理系統是企業競爭力的核心。從傳統的數據庫到現代的數據中臺,每一種技術都在數據的旅程中扮演著關鍵角色。本文將深入探討
    的頭像 發表于 01-17 10:20 ?368次閱讀

    關于AD9243的時序理解,求助高手解答

    第一個數據時在前3個時鐘周期之后才輸出,之后每輸入一個時鐘上升沿就輸出一個數據,不用和第一個數據輸出一樣需要延遲3個時鐘周期。不知道我的理解對不對
    發表于 01-09 08:12

    mysql怎么新建一個數據

    mysql怎么新建一個數據庫 如何新建一個數據庫在MySQL中 創建一個數據庫是MySQL中的基本操作之一。下面將詳細介紹在MySQL中如何新建一個數據庫。 在MySQL中創建
    的頭像 發表于 12-28 10:01 ?886次閱讀
    主站蜘蛛池模板: 国产亚洲精品久久久久久一区二区 | 99re6久久热在线播放| 国产精品美女久久久久AV超清| 久久综合伊人 magnet| 亚洲中文久久久久久国产精品| 国产精品手机在线视频| 思思99热久久精品在线6| 成年免费大片黄在线观看岛国| 欧美乱妇15p图| 97超碰97资源在线观看| 快播dvd吧| 最新亚洲一区二区三区四区| 亚洲高清无码在线 视频| 国产跪地吃黄金喝圣水合集| 熟妇内谢69XXXXXA片| 国产成人a视频在线观看| 视频一区亚洲视频无码| 国产成人免费在线观看| 无敌在线视频观看免费| 国产免费毛片在线观看| 亚洲免费一区| 快播官方网站| qvod伦理片| 手机毛片免费看| 饥渴的新婚女教师| 日韩精品无码免费专区| 短篇合集纯肉高H深陷骚| 忘忧草在线社区WWW日本直播| 国产亚洲精品品视频在线| 亚洲一区成人| 暖暖视频大全免费观看| 国产99久久久国产精品免费看| 无码骚夜夜精品| 久草青青在线| 亚洲AV精品乱码专区| 99热这里只有 精品| 日韩欧美一区二区三区免费看| 国产精品99精品无码视亚| 亚洲视频欧美在线专区| 免费在线a| 国产精品第1页在线观看|