色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

關于堆棧最經典的講解

Q4MP_gh_c472c21 ? 來源:yingms ? 2021-03-31 11:27 ? 次閱讀

一、預備知識—程序的內存分配

一個由c/C++編譯的程序占用的內存分為以下幾個部分

1、棧區(stack)— 由編譯器自動分配釋放 ,存放函數的參數值,局部變量的值等。其操作方式類似于數據結構中的棧。

2、堆區(heap) — 一般由程序員分配釋放, 若程序員不釋放,程序結束時可能由OS回收 。注意它與數據結構中的堆是兩回事,分配方式倒是類似于鏈表。

3、全局區(靜態區)(static)—,全局變量和靜態變量的存儲是放在一塊的,初始化的全局變量和靜態變量在一塊區域, 未初始化的全局變量和未初始化的靜態變量在相鄰的另一塊區域。- 程序結束后有系統釋放

4、文字常量區—常量字符串就是放在這里的。程序結束后由系統釋放。

5、程序代碼區—存放函數體的二進制代碼。

二、例子程序

這是一個前輩寫的,非常詳細

//main.cpp

int a = 0; //全局初始化區

int a = 0; //全局初始化區

char *p1; //全局未初始化區

main() {

int b; //棧

char s[] = “abc”; //棧

char *p2; //棧

char *p3 = “123456”; //123456在常量區,p3在棧上。

static int c = 0; //全局(靜態)初始化區

p1 = (char *)malloc(10);

p2 = (char *)malloc(20);

//分配得來得10和20字節的區域就在堆區。

strcpy(p1, “123456”); //123456放在常量區,編譯器可能會將它與p3所指向的“123456”優化成一個地方。

}

二、堆和棧的理論知識

2.1申請方式

stack:

由系統自動分配。例如,聲明在函數中一個局部變量 int b; 系統自動在棧中為b開辟空間

heap:

需要程序員自己申請,并指明大小,在c中malloc函數

如p1 = (char *)malloc(10);

在C++中用new運算符

如p2 = (char *)malloc(10);

但是注意p1、p2本身是在棧中的。

2.2 申請后系統的響應

棧:只要棧的剩余空間大于所申請空間,系統將為程序提供內存,否則將報異常提示棧溢出。

堆:首先應該知道操作系統有一個記錄空閑內存地址的鏈表,當系統收到程序的申請時,

會遍歷該鏈表,尋找第一個空間大于所申請空間的堆結點,然后將該結點從空閑結點鏈表中刪除,并將該結點的空間分配給程序,另外,對于大多數系統,會在這塊內存空間中的首地址處記錄本次分配的大小,這樣,代碼中的delete語句才能正確的釋放本內存空間。另外,由于找到的堆結點的大小不一定正好等于申請的大小,系統會自動的將多余的那部分重新放入空閑鏈表中。

2.3 申請大小的限制

棧:在Windows下,棧是向低地址擴展的數據結構,是一塊連續的內存的區域。這句話的意思是棧頂的地址和棧的最大容量是系統預先規定好的,在WINDOWS下,棧的大小是2M(也有的說是1M,總之是一個編譯時就確定的常數),如果申請的空間超過棧的剩余空間時,將提示overflow。因此,能從棧獲得的空間較小。

堆:堆是向高地址擴展的數據結構,是不連續的內存區域。這是由于系統是用鏈表來存儲的空閑內存地址的,自然是不連續的,而鏈表的遍歷方向是由低地址向高地址。堆的大小受限于計算機系統中有效的虛擬內存。由此可見,堆獲得的空間比較靈活,也比較大。

2.4 申請效率的比較:

棧由系統自動分配,速度較快。但程序員是無法控制的。

堆是由new分配的內存,一般速度比較慢,而且容易產生內存碎片,不過用起來最方便。

另外,在WINDOWS下,最好的方式是用VirtualAlloc分配內存,他不是在堆,也不是在棧是直接在進程的地址空間中保留一快內存,雖然用起來最不方便。但是速度快,也最靈活。

2.5 堆和棧中的存儲內容

棧:在函數調用時,第一個進棧的是主函數中后的下一條指令(函數調用語句的下一條可執行語句)的地址,然后是函數的各個參數,在大多數的C編譯器中,參數是由右往左入棧的,然后是函數中的局部變量。注意靜態變量是不入棧的。

當本次函數調用結束后,局部變量先出棧,然后是參數,最后棧頂指針指向最開始存的地址,也就是主函數中的下一條指令,程序由該點繼續運行。

堆:一般是在堆的頭部用一個字節存放堆的大小。堆中的具體內容有程序員安排。

2.6 存取效率的比較

char s1[] = “aaaaaaaaaaaaaaa”;

char *s2 = “bbbbbbbbbbbbbbbbb”;

aaaaaaaaaaa是在運行時刻賦值的;

而bbbbbbbbbbb是在編譯時就確定的;

但是,在以后的存取中,在棧上的數組比指針所指向的字符串(例如堆)快。

比如:

#include

void main() {

char a = 1;

char c[] = “1234567890”;

char *p =“1234567890”;

a = c[1];

a = p[1];

return;

}

對應的匯編代碼

10: a = c[1];

00401067 8A 4D F1 mov cl,byte ptr [ebp-0Fh]

0040106A 88 4D FC mov byte ptr [ebp-4],cl

11: a = p[1];

0040106D 8B 55 EC mov edx,dword ptr [ebp-14h]

00401070 8A 42 01 mov al,byte ptr [edx+1]

00401073 88 45 FC mov byte ptr [ebp-4],al

第一種在讀取時直接就把字符串中的元素讀到寄存器cl中,而第二種則要先把指針值讀到edx中,在根據edx讀取字符,顯然慢了。

2.7小結:

堆和棧的區別可以用如下的比喻來看出:

使用棧就象我們去飯館里吃飯,只管點菜(發出申請)、付錢、和吃(使用),吃飽了就走,不必理會切菜、洗菜等準備工作和洗碗、刷鍋等掃尾工作,他的好處是快捷,但是自由度小。

使用堆就象是自己動手做喜歡吃的菜肴,比較麻煩,但是比較符合自己的口味,而且自由度大。

三 、windows進程中的內存結構

在閱讀本文之前,如果你連堆棧是什么多不知道的話,請先閱讀文章后面的基礎知識。

接觸過編程的人都知道,高級語言都能通過變量名來訪問內存中的數據。那么這些變量在內存中是如何存放的呢?程序又是如何使用這些變量的呢?下面就會對此進行深入的討論。下文中的C語言代碼如沒有特別聲明,默認都使用VC編譯的release版。

首先,來了解一下 C 語言的變量是如何在內存分部的。C 語言有全局變量(Global)、本地變量(Local),靜態變量(Static)、寄存器變量(Regeister)。每種變量都有不同的分配方式。先來看下面這段代碼:

#include 《stdio.h》

int g1=0, g2=0, g3=0;

int main()

{

static int s1=0, s2=0, s3=0;

int v1=0, v2=0, v3=0;

//打印出各個變量的內存地址

printf(“0x%08x

”,&v1); //打印各本地變量的內存地址

printf(“0x%08x

”,&v2);

printf(“0x%08x

”,&v3);

printf(“0x%08x

”,&g1); //打印各全局變量的內存地址

printf(“0x%08x

”,&g2);

printf(“0x%08x

”,&g3);

printf(“0x%08x

”,&s1); //打印各靜態變量的內存地址

printf(“0x%08x

”,&s2);

printf(“0x%08x

”,&s3);

return 0;

}

編譯后的執行結果是:

0x0012ff78

0x0012ff7c

0x0012ff80

0x004068d0

0x004068d4

0x004068d8

0x004068dc

0x004068e0

0x004068e4

輸出的結果就是變量的內存地址。其中v1,v2,v3是本地變量,g1,g2,g3是全局變量,s1,s2,s3是靜態變量。你可以看到這些變量在內存是連續分布的,但是本地變量和全局變量分配的內存地址差了十萬八千里,而全局變量和靜態變量分配的內存是連續的。這是因為本地變量和全局/靜態變量是分配在不同類型的內存區域中的結果。對于一個進程的內存空間而言,可以在邏輯上分成3個部份:代碼區,靜態數據區和動態數據區。動態數據區一般就是“堆?!薄!皸#╯tack)”和“堆(heap)”是兩種不同的動態數據區,棧是一種線性結構,堆是一種鏈式結構。進程的每個線程都有私有的“?!?,所以每個線程雖然代碼一樣,但本地變量的數據都是互不干擾。一個堆??梢酝ㄟ^“基地址”和“棧頂”地址來描述。全局變量和靜態變量分配在靜態數據區,本地變量分配在動態數據區,即堆棧中。程序通過堆棧的基地址和偏移量來訪問本地變量。

├———————┤低端內存區域

│ …… │

├———————┤

│ 動態數據區 │

├———————┤

│ …… │

├———————┤

│ 代碼區 │

├———————┤

│ 靜態數據區 │

├———————┤

│ …… │

├———————┤高端內存區域

堆棧是一個先進后出的數據結構,棧頂地址總是小于等于棧的基地址。我們可以先了解一下函數調用的過程,以便對堆棧在程序中的作用有更深入的了解。不同的語言有不同的函數調用規定,這些因素有參數的壓入規則和堆棧的平衡。windows API的調用規則和ANSI C的函數調用規則是不一樣的,前者由被調函數調整堆棧,后者由調用者調整堆棧。兩者通過“__stdcall”和“__cdecl”前綴區分。先看下面這段代碼:

#include 《stdio.h》

void __stdcall func(int param1,int param2,int param3)

{

int var1=param1;

int var2=param2;

int var3=param3;

printf(“0x%08x

”,param1); //打印出各個變量的內存地址

printf(“0x%08x

”,param2);

printf(“0x%08x

”,param3);

printf(“0x%08x

”,&var1);

printf(“0x%08x

”,&var2);

printf(“0x%08x

”,&var3);

return;

}

int main() {

func(1,2,3);

return 0;

}

編譯后的執行結果是:

0x0012ff78

0x0012ff7c

0x0012ff80

0x0012ff68

0x0012ff6c

0x0012ff70

├———————┤《—函數執行時的棧頂(ESP)、低端內存區域

│ …… │

├———————┤

│ var 1 │

├———————┤

│ var 2 │

├———————┤

│ var 3 │

├———————┤

│ RET │

├———————┤《—“__cdecl”函數返回后的棧頂(ESP)

│ parameter 1 │

├———————┤

│ parameter 2 │

├———————┤

│ parameter 3 │

├———————┤《—“__stdcall”函數返回后的棧頂(ESP)

│ …… │

├———————┤《—棧底(基地址 EBP)、高端內存區域

上圖就是函數調用過程中堆棧的樣子了。首先,三個參數以從右到左的次序壓入堆棧,先壓“param3”,再壓“param2”,最后壓入“param1”;然后壓入函數的返回地址(RET),接著跳轉到函數地址接著執行(這里要補充一點,介紹UNIX下的緩沖溢出原理的文章中都提到在壓入RET后,繼續壓入當前EBP,然后用當前ESP代替EBP。然而,有一篇介紹windows下函數調用的文章中說,在windows下的函數調用也有這一步驟,但根據我的實際調試,并未發現這一步,這還可以從param3和var1之間只有4字節的間隙這點看出來);第三步,將棧頂(ESP)減去一個數,為本地變量分配內存空間,上例中是減去12字節(ESP=ESP-3*4,每個int變量占用4個字節);接著就初始化本地變量的內存空間。由于“__stdcall”調用由被調函數調整堆棧,所以在函數返回前要恢復堆棧,先回收本地變量占用的內存(ESP=ESP+3*4),然后取出返回地址,填入EIP寄存器,回收先前壓入參數占用的內存(ESP=ESP+3*4),繼續執行調用者的代碼。參見下列匯編代碼:

;--------------func 函數的匯編代碼-------------------

:00401000 83EC0C sub esp, 0000000C //創建本地變量的內存空間

:00401003 8B442410 mov eax, dword ptr [esp+10]

:00401007 8B4C2414 mov ecx, dword ptr [esp+14]

:0040100B 8B542418 mov edx, dword ptr [esp+18]

:0040100F 89442400 mov dword ptr [esp], eax

:00401013 8D442410 lea eax, dword ptr [esp+10]

:00401017 894C2404 mov dword ptr [esp+04], ecx

……………………(省略若干代碼)

:00401075 83C43C add esp, 0000003C ;恢復堆棧,回收本地變量的內存空間

:00401078 C3 ret 000C ;函數返回,恢復參數占用的內存空間

;如果是“__cdecl”的話,這里是“ret”,堆棧將由調用者恢復

;-------------------函數結束-------------------------

;--------------主程序調用func函數的代碼--------------

:00401080 6A03 push 00000003 //壓入參數param3

:00401082 6A02 push 00000002 //壓入參數param2

:00401084 6A01 push 00000001 //壓入參數param1

:00401086 E875FFFFFF call 00401000 //調用func函數

;如果是“__cdecl”的話,將在這里恢復堆棧,“add esp, 0000000C”

聰明的讀者看到這里,差不多就明白緩沖溢出的原理了。先來看下面的代碼:

#include 《stdio.h》

#include 《string.h》

void __stdcall func() {

char lpBuff[8]=“”;

strcat(lpBuff,“AAAAAAAAAAA”);

return;

}

int main() {

func();

return 0;

}

編譯后執行一下回怎么樣?哈,“”0x00414141”指令引用的”0x00000000”內存。該內存不能為”read”?!?,“非法操作”嘍!”41”就是”A”的16進制的ASCII碼了,那明顯就是strcat這句出的問題了。”lpBuff”的大小只有8字節,算進結尾的,那strcat最多只能寫入7個”A”,但程序實際寫入了11個”A”外加1個。再來看看上面那幅圖,多出來的4個字節正好覆蓋了RET的所在的內存空間,導致函數返回到一個錯誤的內存地址,執行了錯誤的指令。如果能精心構造這個字符串,使它分成三部分,前一部份僅僅是填充的無意義數據以達到溢出的目的,接著是一個覆蓋RET的數據,緊接著是一段shellcode,那只要這個RET地址能指向這段shellcode的第一個指令,那函數返回時就能執行shellcode了。但是軟件的不同版本和不同的運行環境都可能影響這段shellcode在內存中的位置,那么要構造這個RET是十分困難的。一般都在RET和shellcode之間填充大量的NOP指令,使得exploit有更強的通用性。

├———————┤《—低端內存區域

│ …… │

├———————┤《—由exploit填入數據的開始

│ │

│ buffer │《—填入無用的數據

│ │

├———————┤

│ RET │《—指向shellcode,或NOP指令的范圍

├———————┤

│ NOP │

│ …… │《—填入的NOP指令,是RET可指向的范圍

│ NOP │

├———————┤

│ │

│ shellcode │

│ │

├———————┤《—由exploit填入數據的結束

│ …… │

├———————┤《—高端內存區域

windows下的動態數據除了可存放在棧中,還可以存放在堆中。了解C++的朋友都知道,C++可以使用new關鍵字來動態分配內存。來看下面的C++代碼:

#include 《stdio.h》

#include 《iostream.h》

#include 《windows.h》

void func()

{

char *buffer=new char[128];

char bufflocal[128];

static char buffstatic[128];

printf(“0x%08x

”,buffer); //打印堆中變量的內存地址

printf(“0x%08x

”,bufflocal); //打印本地變量的內存地址

printf(“0x%08x

”,buffstatic); //打印靜態變量的內存地址

}

void main() {

func();

return;

}

程序執行結果為:

0x004107d0

0x0012ff04

0x004068c0

可以發現用new關鍵字分配的內存即不在棧中,也不在靜態數據區。VC編譯器是通過windows下的“堆(heap)”來實現new關鍵字的內存動態分配。在講“堆”之前,先來了解一下和“堆”有關的幾個API函數:

- HeapAlloc 在堆中申請內存空間

- HeapCreate 創建一個新的堆對象

- HeapDestroy 銷毀一個堆對象

- HeapFree 釋放申請的內存

- HeapWalk 枚舉堆對象的所有內存塊

- GetProcessHeap 取得進程的默認堆對象

- GetProcessHeaps 取得進程所有的堆對象

- LocalAlloc

- GlobalAlloc

當進程初始化時,系統會自動為進程創建一個默認堆,這個堆默認所占內存的大小為1M。堆對象由系統進行管理,它在內存中以鏈式結構存在。通過下面的代碼可以通過堆動態申請內存空間:

HANDLE hHeap=GetProcessHeap();

char *buff=HeapAlloc(hHeap,0,8);

其中hHeap是堆對象的句柄,buff是指向申請的內存空間的地址。那這個hHeap究竟是什么呢?它的值有什么意義嗎?看看下面這段代碼吧:

#pragma comment(linker,“/entry:main”) //定義程序的入口

#include 《windows.h》

_CRTIMP int (__cdecl *printf)(const char *, 。。。); //定義STL函數printf

/*---------------------------------------------------------------------------

寫到這里,我們順便來復習一下前面所講的知識:

(*注)printf函數是C語言的標準函數庫中函數,VC的標準函數庫由msvcrt.dll模塊實現。

由函數定義可見,printf的參數個數是可變的,函數內部無法預先知道調用者壓入的參數個數,函數只能通過分析第一個參數字符串的格式來獲得壓入參數的信息,由于這里參數的個數是動態的,所以必須由調用者來平衡堆棧,這里便使用了__cdecl調用規則。BTW,Windows系統的API函數基本上是__stdcall調用形式,只有一個API例外,那就是wsprintf,它使用__cdecl調用規則,同printf函數一樣,這是由于它的參數個數是可變的緣故。

---------------------------------------------------------------------------*/

void main()

{

HANDLE hHeap=GetProcessHeap();

char *buff=HeapAlloc(hHeap,0,0x10);

char *buff2=HeapAlloc(hHeap,0,0x10);

HMODULE hMsvcrt=LoadLibrary(“msvcrt.dll”);

printf=(void *)GetProcAddress(hMsvcrt,“printf”);

printf(“0x%08x

”,hHeap);

printf(“0x%08x

”,buff);

printf(“0x%08x

”,buff2);

}

執行結果為:

0x00130000

0x00133100

0x00133118

hHeap的值怎么和那個buff的值那么接近呢?其實hHeap這個句柄就是指向HEAP首部的地址。在進程的用戶區存著一個叫PEB(進程環境塊)的結構,這個結構中存放著一些有關進程的重要信息,其中在PEB首地址偏移0x18處存放的ProcessHeap就是進程默認堆的地址,而偏移0x90處存放了指向進程所有堆的地址列表的指針。windows有很多API都使用進程的默認堆來存放動態數據,如windows 2000下的所有ANSI版本的函數都是在默認堆中申請內存來轉換ANSI字符串到Unicode字符串的。對一個堆的訪問是順序進行的,同一時刻只能有一個線程訪問堆中的數據,當多個線程同時有訪問要求時,只能排隊等待,這樣便造成程序執行效率下降。

最后來說說內存中的數據對齊。所位數據對齊,是指數據所在的內存地址必須是該數據長度的整數倍,DWORD數據的內存起始地址能被4除盡,WORD數據的內存起始地址能被2除盡,x86 CPU能直接訪問對齊的數據,當他試圖訪問一個未對齊的數據時,會在內部進行一系列的調整,這些調整對于程序來說是透明的,但是會降低運行速度,所以編譯器在編譯程序時會盡量保證數據對齊。同樣一段代碼,我們來看看用VC、Dev-C++和lcc三個不同編譯器編譯出來的程序的執行結果:

#include 《stdio.h》

int main()

{

int a;

char b;

int c;

printf(“0x%08x

”,&a);

printf(“0x%08x

”,&b);

printf(“0x%08x

”,&c);

return 0;

}

這是用VC編譯后的執行結果:

0x0012ff7c

0x0012ff7b

0x0012ff80

變量在內存中的順序:b(1字節)-a(4字節)-c(4字節)。

這是用Dev-C++編譯后的執行結果:

0x0022ff7c

0x0022ff7b

0x0022ff74

變量在內存中的順序:c(4字節)-中間相隔3字節-b(占1字節)-a(4字節)。

這是用lcc編譯后的執行結果:

0x0012ff6c

0x0012ff6b

0x0012ff64

變量在內存中的順序:同上。

三個編譯器都做到了數據對齊,但是后兩個編譯器顯然沒VC“聰明”,讓一個char占了4字節,浪費內存哦。

基礎知識:

堆棧是一種簡單的數據結構,是一種只允許在其一端進行插入或刪除的線性表。允許插入或刪除操作的一端稱為棧頂,另一端稱為棧底,對堆棧的插入和刪除操作被稱為入棧和出棧。有一組CPU指令可以實現對進程的內存實現堆棧訪問。其中,POP指令實現出棧操作,PUSH指令實現入棧操作。CPU的ESP寄存器存放當前線程的棧頂指針,EBP寄存器中保存當前線程的棧底指針。CPU的EIP寄存器存放下一個CPU指令存放的內存地址,當CPU執行完當前的指令后,從EIP寄存器中讀取下一條指令的內存地址,然后繼續執行。

責任編輯:lq6

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 堆棧
    +關注

    關注

    0

    文章

    182

    瀏覽量

    19824
  • 編譯器
    +關注

    關注

    1

    文章

    1642

    瀏覽量

    49277
  • 線性表
    +關注

    關注

    0

    文章

    7

    瀏覽量

    3535

原文標題:關于堆棧的講解(我見過的最經典的)

文章出處:【微信號:gh_c472c2199c88,微信公眾號:嵌入式微處理器】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    AUTOSAR中通信堆棧的配置 AUTOSAR通信模塊測試方法

    )的開發和生產。通信堆棧是AUTOSAR架構中的關鍵組成部分,負責處理ECU之間的通信。 AUTOSAR中通信堆棧的配置 通信模型 : AUTOSAR定義了一種分層的通信模型,包括應用層、診斷層、網絡
    的頭像 發表于 12-17 15:01 ?363次閱讀

    TMS320C28x DSP上的在線堆棧溢出檢測

    電子發燒友網站提供《TMS320C28x DSP上的在線堆棧溢出檢測.pdf》資料免費下載
    發表于 10-18 11:16 ?1次下載
    TMS320C28x DSP上的在線<b class='flag-5'>堆棧</b>溢出檢測

    使用Simplelink無線MCU系列克隆Z堆棧網絡屬性

    電子發燒友網站提供《使用Simplelink無線MCU系列克隆Z堆棧網絡屬性.pdf》資料免費下載
    發表于 09-26 10:57 ?0次下載
    使用Simplelink無線MCU系列克隆Z<b class='flag-5'>堆棧</b>網絡屬性

    使用Simplelink?無線MCU系列測量堆棧終端器件功耗

    電子發燒友網站提供《使用Simplelink?無線MCU系列測量堆棧終端器件功耗.pdf》資料免費下載
    發表于 09-26 10:44 ?0次下載
    使用Simplelink?無線MCU系列測量<b class='flag-5'>堆棧</b>終端器件功耗

    半導體二極管及其基本電路介紹

    基礎電子電路經典實例講解,常見模數電電路和常見電子元件電路和結構講解
    發表于 09-14 09:53 ?4次下載

    C2000?MCU的運行時堆棧大小監測

    電子發燒友網站提供《C2000?MCU的運行時堆棧大小監測.pdf》資料免費下載
    發表于 09-11 09:30 ?0次下載
    C2000?MCU的運行時<b class='flag-5'>堆棧</b>大小監測

    德州儀器(TI)Wi-SUN? 堆棧:幀計數器驗證缺失

    電子發燒友網站提供《德州儀器(TI)Wi-SUN? 堆棧:幀計數器驗證缺失.pdf》資料免費下載
    發表于 09-06 11:31 ?0次下載
    德州儀器(TI)Wi-SUN? <b class='flag-5'>堆棧</b>:幀計數器驗證缺失

    電感技術的講解

    詳細講解電感的原理及計算
    的頭像 發表于 09-06 02:07 ?2348次閱讀
    電感技術的<b class='flag-5'>講解</b>

    堆棧和內存的基本知識

    本文主要聊聊關于堆棧的內容。包括堆棧和內存的基本知識。常見和堆棧相關的 bug,如棧溢出,內存泄漏,堆內存分配失敗等。后面介紹軟件中堆棧統計
    的頭像 發表于 08-29 14:10 ?566次閱讀
    <b class='flag-5'>堆棧</b>和內存的基本知識

    如何使用Polyspace Code Prover來統計堆棧

    前一篇文章介紹了堆棧和內存的一些背景知識。本次介紹如何使用 Polyspace Code Prover來統計堆棧,如何使用這些數據為軟件優化服務。
    的頭像 發表于 07-25 14:06 ?587次閱讀
    如何使用Polyspace Code Prover來統計<b class='flag-5'>堆棧</b>

    請問est_printf為什么要使用堆棧空間?

    - 它應該只是減慢你的代碼,因為它在等待輸出調試消息時什么都不做 - 不會占用堆棧空間。 我用 ets_printf 儀器化了 malloc 和 free。 發生這種情況時,會生成一個異常,即在
    發表于 07-09 07:47

    求助,關于stm32f1使用freeRTOS和Fatfs時任務堆棧大小問題求解

    哪位使用過freeRTOS和Fatfs時,使用Fatfs系統的函數如f_open()等等時,此任務的堆棧大小大致需要多大,當前MAX_SS 定義為4096,我分配12K軟件都跑飛了,請哪位使用分享一下經驗,謝謝!~~?
    發表于 05-09 06:50

    關于MOS管電路工作原理的講解

    MOS管的話題雖說是老生常談,但這份資料幾年前就有人給我分享過,這是網上評價非常高的一篇關于MOS管電路工作原理的講解,從管腳的識別,到極性的分辨,再到常用功能,應用電路等等
    發表于 04-22 12:26 ?573次閱讀
    <b class='flag-5'>關于</b>MOS管電路工作原理的<b class='flag-5'>講解</b>

    Bittware提供開放式FPGA堆棧和支持英特爾?oneAPI的加速卡

    通過使用開放式 FPGA 堆棧 (OFS) ,BittWare 在其 FPGA 解決方案上提供對 oneAPI 的支持。
    的頭像 發表于 03-29 14:57 ?659次閱讀
    Bittware提供開放式FPGA<b class='flag-5'>堆棧</b>和支持英特爾?oneAPI的加速卡

    萊迪思O-RAN堆棧優化5G小型基站

    萊迪思推出的O-RAN堆棧,致力于快速推進具有強大安全性與適應性的O-RAN系統及應用落地。作為開放、靈活的5G網絡架構,O-RAN已被視為5G網絡關鍵。萊迪思的堆棧提供軟硬結合的組件,簡化工序,降低開發成本,提高市場投放速度。
    的頭像 發表于 03-01 16:25 ?693次閱讀
    主站蜘蛛池模板: 成人精品视频在线观看 | 天天躁人人躁人人躁狂躁 | 亚洲精品成A人在线观看 | 精品人妻伦九区久久AAA片69 | 久久久精品成人免费看 | 99热在线免费观看 | 99精品日韩 | 99re热视频这里只有精品 | 全肉高H短篇合集 | 国产色欲一区二区精品久久呦 | 年轻的女职工在线观看 | 国产精品无码视频一区二区 | 免费女性裸身照无遮挡网站 | 污污内射在线观看一区二区少妇 | fryee性欧美18 19 | 约艺术院校96年清纯白嫩 | 久久久久国产精品美女毛片 | 青柠在线观看免费播放电影 | 精品国产人成亚洲区 | 欧美激情视频在线观看一区二区三区 | 亚洲AV蜜桃永久无码精品红樱桃 | 受坐在攻腿上H道具PLAY | 九九热精品在线观看 | 亚洲中文字幕一二三四区苍井空 | 香港论理午夜电影网 | 亚洲视频中文字幕在线 | 午夜影视不充值观看 | 亚洲香蕉视频在线播放 | 久久re6热在线视频精品 | 亚洲精品成人A8198A片漫画 | 国产午夜电影院 | 男人边吃奶边挵进去呻吟漫画 | 日韩一区二区三区射精 | 视频一区国产精戏刘婷30 | 尤物久久99国产综合精品 | 国产精品久久久久久久人热 | 黑丝美女被人操 | 爆操日本美女 | 国产午夜精品理论片在线 | 国产精品视频大全 | 国产无遮挡又黄又爽在线视频 |