色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
电子发烧友
开通电子发烧友VIP会员 尊享10大特权
海量资料免费下载
精品直播免费看
优质内容免费畅学
课程9折专享价
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

想要全面了解要MOS管 看這個就夠了(上)

fcsde-sh ? 來源:嗶哩嗶哩凡億教育 ? 作者:嗶哩嗶哩凡億教育 ? 2021-03-25 15:38 ? 次閱讀

MOS管學名是場效應管,是金屬-氧化物-半導體型場效應管,屬于絕緣柵型。本文就結構構造、特點、實用電路等幾個方面用工程師的話簡單描述。

其結構示意圖:

bcaf05d2-8cce-11eb-8b86-12bb97331649.jpg

解釋1:溝道

上面圖中,下邊的p型中間一個窄長條就是溝道,使得左右兩塊P型極連在一起,因此mos管導通后是電阻特性,因此它的一個重要參數就是導通電阻,選用mos管必須清楚這個參數是否符合需求。

解釋2:n型

上圖表示的是p型mos管,讀者可以依據此圖理解n型的,都是反過來即可。因此,不難理解,n型的如圖在柵極加正壓會導致導通,而p型的相反。

解釋3:增強型

相對于耗盡型,增強型是通過“加厚”導電溝道的厚度來導通,如圖。柵極電壓越低,則p型源、漏極的正離子就越靠近中間,n襯底的負離子就越遠離柵極,柵極電壓達到一個值,叫閥值或坎壓時,由p型游離出來的正離子連在一起,形成通道,就是圖示效果。因此,容易理解,柵極電壓必須低到一定程度才能導通,電壓越低,通道越厚,導通電阻越小。

由于電場的強度與距離平方成正比,因此,電場強到一定程度之后,電壓下降引起的溝道加厚就不明顯了,也是因為n型負離子的“退讓”是越來越難的。耗盡型的是事先做出一個導通層,用柵極來加厚或者減薄來控制源漏的導通。但這種管子一般不生產,在市面基本見不到。所以,大家平時說mos管,就默認是增強型的。

解釋4:左右對稱

圖示左右是對稱的,難免會有人問怎么區分源極和漏極呢?其實原理上,源極和漏極確實是對稱的,是不區分的。但在實際應用中,廠家一般在源極和漏極之間連接一個二極管,起保護作用,正是這個二極管決定了源極和漏極,這樣,封裝也就固定了,便于實用。我的老師年輕時用過不帶二極管的mos管。非常容易被靜電擊穿,平時要放在鐵質罐子里,它的源極和漏極就是隨便接。

解釋5:金屬氧化物膜

圖中有指示,這個膜是絕緣的,用來電氣隔離,使得柵極只能形成電場,不能通過直流電,因此是用電壓控制的。在直流電氣上,柵極和源漏極是斷路。不難理解,這個膜越薄:電場作用越好、坎壓越小、相同柵極電壓時導通能力越強。壞處是:越容易擊穿、工藝制作難度越大而價格越貴。例如導通電阻在歐姆級的,1角人民幣左右買一個,而2402等在十毫歐級的,要2元多(批量買。零售是4元左右)。

解釋6:與實物的區別

上圖僅僅是原理性的,實際的元件增加了源-漏之間跨接的保護二極管,從而區分了源極和漏極。實際的元件,p型的,襯底是接正電源的,使得柵極預先成為相對負電壓,因此p型的管子,柵極不用加負電壓了,接地就能保證導通。相當于預先形成了不能導通的溝道,嚴格講應該是耗盡型了。好處是明顯的,應用時拋開了負電壓。

解釋7:寄生電容

上圖的柵極通過金屬氧化物與襯底形成一個電容,越是高品質的mos,膜越薄,寄生電容越大,經常mos管的寄生電容達到nF級。這個參數是mos管選擇時至關重要的參數之一,必須考慮清楚。Mos管用于控制大電流通斷,經常被要求數十K乃至數M的開關頻率,在這種用途中,柵極信號具有交流特征,頻率越高,交流成分越大,寄生電容就能通過交流電流的形式通過電流,形成柵極電流。

消耗的電能、產生的熱量不可忽視,甚至成為主要問題。為了追求高速,需要強大的柵極驅動,也是這個道理。試想,弱驅動信號瞬間變為高電平,但是為了“灌滿”寄生電容需要時間,就會產生上升沿變緩,對開關頻率形成重大威脅直至不能工作。

解釋8:如何工作在放大區

Mos管也能工作在放大區,而且很常見。做鏡像電流源、運放、反饋控制等,都是利用mos管工作在放大區,由于mos管的特性,當溝道處于似通非通時,柵極電壓直接影響溝道的導電能力,呈現一定的線性關系。由于柵極與源漏隔離,因此其輸入阻抗可視為無窮大,當然,隨頻率增加阻抗就越來越小,一定頻率時,就變得不可忽視。這個高阻抗特點被廣泛用于運放,運放分析的虛連、虛斷兩個重要原則就是基于這個特點。這是三極管不可比擬的。

解釋9:發熱原因

Mos管發熱,主要原因之一是寄生電容在頻繁開啟關閉時,顯現交流特性而具有阻抗,形成電流。有電流就有發熱,并非電場型的就沒有電流。另一個原因是當柵極電壓爬升緩慢時,導通狀態要“路過”一個由關閉到導通的臨界點,這時,導通電阻很大,發熱比較厲害。第三個原因是導通后,溝道有電阻,過主電流,形成發熱。主要考慮的發熱是第1和第3點。許多mos管具有結溫過高保護,所謂結溫就是金屬氧化膜下面的溝道區域溫度,一般是150攝氏度。超過此溫度,mos管不可能導通。溫度下降就恢復。要注意這種保護狀態的后果。

但愿上述描述能通俗的理解mos管,下面說說幾個約定俗成電路:

1:pmos應用

一般用于管理電源的通斷,屬于無觸點開關,柵極低電平就完全導通,高電平就完全截止。而且,柵極可以加高過電源的電壓,意味著可以用5v信號管理3v電源的開關,這個原理也用于電平轉換。

2:nmos管應用

一般用于管理某電路是否接地,屬于無觸點開關,柵極高電平就導通導致接地,低電平截止。當然柵極也可以用負電壓截止,但這個好處沒什么意義。其高電平可以高過被控制部分的電源,因為柵極是隔離的。因此可以用5v信號控制3v系統的某處是否接地,這個原理也用于電平轉換。

3:放大區應用

工作于放大區,一般用來設計反饋電路,需要的專業知識比較多,類似運放,這里無法細說。常用做鏡像電流源、電流反饋、電壓反饋等。至于運放的集成應用,我們其實不用關注。人家都做好了,看好datasheet就可以了,不用按mos管方式去考慮導通電阻和寄生電容。

03MOS管的基本知識

現在的高清、液晶、等離子電視機中開關電源部分除了采用了PFC技術外,在元器件上的開關管均采用性能優異的MOS管取代過去的大功率晶體三極管,使整機的效率、可靠性、故障率均大幅的下降。由于MOS管和大功率晶體三極管在結構、特性有著本質上的區別,在應用上;驅動電路也比晶體三極管復雜,致使維修人員對電路、故障的分析倍感困難,此文即針對這一問題,把MOS管及其應用電路作簡單介紹,以滿足維修人員需求。

一、什么是MOS管

MOS管的英文全稱叫MOSFET(Metal Oxide Semiconductor Field Effect Transistor),即金屬氧化物半導體型場效應管,屬于場效應管中的絕緣柵型。因此,MOS管有時被稱為絕緣柵場效應管。在一般電子電路中,MOS管通常被用于放大電路或開關電路

1、MOS管的構造;

在一塊摻雜濃度較低的P型半導體硅襯底上,用半導體光刻、擴散工藝制作兩個高摻雜濃度的N+區,并用金屬鋁引出兩個電極,分別作為漏極D和源極S。然后在漏極和源極之間的P型半導體表面復蓋一層很薄的二氧化硅(Si02)絕緣層膜,在再這個絕緣層膜上裝上一個鋁電極,作為柵極G。這就構成了一個N溝道(NPN型)增強型MOS管。顯然它的柵極和其它電極間是絕緣的。圖1-1所示 A 、B分別是它的結構圖和代表符號。

同樣用上述相同的方法在一塊摻雜濃度較低的N型半導體硅襯底上,用半導體光刻、擴散工藝制作兩個高摻雜濃度的P+區,及上述相同的柵極制作過程,就制成為一個P溝道(PNP型)增強型MOS管。圖1-2所示A 、B分別是P溝道MOS管道結構圖和代表符號。

bd116f88-8cce-11eb-8b86-12bb97331649.jpg

圖1 -1-A 圖1 -1-B

bd3439d2-8cce-11eb-8b86-12bb97331649.jpg

圖1-2-A 圖1-2-B

2、MOS管的工作原理:圖1-3是N溝道MOS管工作原理圖;

bd8ae372-8cce-11eb-8b86-12bb97331649.jpg

圖1-3-A

be112162-8cce-11eb-8b86-12bb97331649.jpg

圖1-3-B

從圖1-3-A可以看出,增強型MOS管的漏極D和源極S之間有兩個背靠背的PN結。當柵-源電壓VGS=0時,即使加上漏-源電壓VDS,總有一個PN結處于反偏狀態,漏-源極間沒有導電溝道(沒有電流流過),所以這時漏極電流ID=0。

此時若在柵-源極間加上正向電壓,圖1-3-B所示,即VGS>0,則柵極和硅襯底之間的SiO2絕緣層中便產生一個柵極指向P型硅襯底的電場,由于氧化物層是絕緣的,柵極所加電壓VGS無法形成電流,氧化物層的兩邊就形成了一個電容,VGS等效是對這個電容充電,并形成一個電場,隨著VGS逐漸升高,受柵極正電壓的吸引,在這個電容的另一邊就聚集大量的電子并形成了一個從漏極到源極的N型導電溝道。

當VGS大于管子的開啟電壓VT(一般約為 2V)時,N溝道管開始導通,形成漏極電流ID,我們把開始形成溝道時的柵-源極電壓稱為開啟電壓,一般用VT表示。控制柵極電壓VGS的大小改變了電場的強弱,就可以達到控制漏極電流ID的大小的目的,這也是MOS管用電場來控制電流的一個重要特點,所以也稱之為場效應管。

3、MOS管的特性;

上述MOS管的工作原理中可以看出,MOS管的柵極G和源極S之間是絕緣的,由于Sio2絕緣層的存在,在柵極G和源極S之間等效是一個電容存在,電壓VGS產生電場從而導致源極-漏極電流的產生。此時的柵極電壓VGS決定了漏極電流的大小,控制柵極電壓VGS的大小就可以控制漏極電流ID的大小。這就可以得出如下結論:

1) MOS管是一個由改變電壓來控制電流的器件,所以是電壓器件。

2) MOS管道輸入特性為容性特性,所以輸入阻抗極高。

4、MOS管的電壓極性和符號規則;

圖1-4-A 是N溝道MOS管的符號,圖中D是漏極,S是源極,G是柵極,中間的箭頭表示襯底,如果箭頭向里表示是N溝道的MOS管,箭頭向外表示是P溝道的MOS管。

在實際MOS管生產的過程中襯底在出廠前就和源極連接,所以在符號的規則中;表示襯底的箭頭也必須和源極相連接,以區別漏極和源極。圖1-5-A是P溝道MOS管的符號。

MOS管應用電壓的極性和我們普通的晶體三極管相同,N溝道的類似NPN晶體三極管,漏極D接正極,源極S接負極,柵極G正電壓時導電溝道建立,N溝道MOS管開始工作,如圖1-4-B所示。同樣P道的類似PNP晶體三極管,漏極D接負極,源極S接正極,柵極G負電壓時,導電溝道建立,P溝道MOS管開始工作,如圖1-5-B所示。

be49605e-8cce-11eb-8b86-12bb97331649.jpg

圖1-4-A N溝道MOS管符號

be88b074-8cce-11eb-8b86-12bb97331649.jpg

圖1-4-B N溝道MOS管電壓極性及襯底連接

bedc2f06-8cce-11eb-8b86-12bb97331649.jpg

圖1-5-A P溝道MOS管符號

bf06c0b8-8cce-11eb-8b86-12bb97331649.jpg

圖1-5-B P溝道MOS管電壓極性及襯底連接

5、MOS管和晶體三極管相比的重要特性;

1).場效應管的源極S、柵極G、漏極D分別對應于三極管的發射極e、基極b、集電極c,它們的作用相似,圖1-6-A所示是N溝道MOS管和NPN型晶體三極管引腳,圖1-6-B所示是P溝道MOS管和PNP型晶體三極管引腳對應圖。

bf38cd4c-8cce-11eb-8b86-12bb97331649.jpg

圖1-6-A 圖1-6-B

2).場效應管是電壓控制電流器件,由VGS控制ID,普通的晶體三極管是電流控制電流器件,由IB控制IC。MOS管道放大系數是(跨導gm)當柵極電壓改變一伏時能引起漏極電流變化多少安培。晶體三極管是電流放大系數(貝塔β)當基極電流改變一毫安時能引起集電極電流變化多少。

3).場效應管柵極和其它電極是絕緣的,不產生電流;而三極管工作時基極電流IB決定集電極電流IC。因此場效應管的輸入電阻比三極管的輸入電阻高的多。

4).場效應管只有多數載流子參與導電;三極管有多數載流子和少數載流子兩種載流子參與導電,因少數載流子濃度受溫度、輻射等因素影響較大,所以場效應管比三極管的溫度穩定性好。

5).場效應管在源極未與襯底連在一起時,源極和漏極可以互換使用,且特性變化不大,而三極管的集電極與發射極互換使用時,其特性差異很大,b 值將減小很多。

6).場效應管的噪聲系數很小,在低噪聲放大電路的輸入級及要求信噪比較高的電路中要選用場效應管。

7).場效應管和普通晶體三極管均可組成各種放大電路和開關電路,但是場效應管制造工藝簡單,并且又具有普通晶體三極管不能比擬的優秀特性,在各種電路及應用中正逐步的取代普通晶體三極管,目前的大規模和超大規模集成電路中,已經廣泛的采用場效應管。

6、在開關電源電路中;大功率MOS管和大功率晶體三極管相比MOS管的優點;

1)、輸入阻抗高,驅動功率小:由于柵源之間是二氧化硅(SiO2)絕緣層,柵源之間的直流電阻基本上就是SiO2絕緣電阻,一般達100MΩ左右,交流輸入阻抗基本上就是輸入電容的容抗。由于輸入阻抗高,對激勵信號不會產生壓降,有電壓就可以驅動,所以驅動功率極小(靈敏度高)。一般的晶體三極管必需有基極電壓Vb,再產生基極電流Ib,才能驅動集電極電流的產生。晶體三極管的驅動是需要功率的(Vb×Ib)。

2)、開關速度快:MOSFET的開關速度和輸入的容性特性的有很大關系,由于輸入容性特性的存在,使開關的速度變慢,但是在作為開關運用時,可降低驅動電路內阻,加快開關速度(輸入采用了后述的“灌流電路”驅動,加快了容性的充放電的時間)。MOSFET只靠多子導電,不存在少子儲存效應,因而關斷過程非常迅速,開關時間在10—100ns之間,工作頻率可達100kHz以上,普通的晶體三極管由于少數載流子的存儲效應,使開關總有滯后現象,影響開關速度的提高(目前采用MOS管的開關電源其工作頻率可以輕易的做到100K/S~150K/S,這對于普通的大功率晶體三極管來說是難以想象的)。

3)、無二次擊穿;由于普通的功率晶體三極管具有當溫度上升就會導致集電極電流上升(正的溫度~電流特性)的現象,而集電極電流的上升又會導致溫度進一步的上升,溫度進一步的上升,更進一步的導致集電極電流的上升這一惡性循環。而晶體三極管的耐壓VCEO隨管溫度升高是逐步下降,這就形成了管溫繼續上升、耐壓繼續下降最終導致晶體三極管的擊穿,這是一種導致電視機開關電源管和行輸出管損壞率占95%的破環性的熱電擊穿現象,也稱為二次擊穿現象。

MOS管具有和普通晶體三極管相反的溫度~電流特性,即當管溫度(或環境溫度)上升時,溝道電流IDS反而下降。例如;一只IDS=10A的MOS FET開關管,當VGS控制電壓不變時,在250C溫度下IDS=3A,當芯片溫度升高為1000C時,IDS降低到2A,這種因溫度上升而導致溝道電流IDS下降的負溫度電流特性,使之不會產生惡性循環而熱擊穿。也就是MOS管沒有二次擊穿現象,可見采用MOS管作為開關管,其開關管的損壞率大幅度的降低,近兩年電視機開關電源采用MOS管代替過去的普通晶體三極管后,開關管損壞率大大降低也是一個極好的證明。

4)、MOS管導通后其導通特性呈純阻性;

普通晶體三極管在飽和導通是,幾乎是直通,有一個極低的壓降,稱為飽和壓降,既然有一個壓降,那么也就是;普通晶體三極管在飽和導通后等效是一個阻值極小的電阻,但是這個等效的電阻是一個非線性的電阻(電阻上的電壓和流過的電流不能符合歐姆定律),而MOS管作為開關管應用,在飽和導通后也存在一個阻值極小的電阻,但是這個電阻等效一個線性電阻,其電阻的阻值和兩端的電壓降和流過的電流符合歐姆定律的關系,電流大壓降就大,電流小壓降就小,導通后既然等效是一個線性元件,線性元件就可以并聯應用,當這樣兩個電阻并聯在一起,就有一個自動電流平衡的作用,所以MOS管在一個管子功率不夠的時候,可以多管并聯應用,且不必另外增加平衡措施(非線性器件是不能直接并聯應用的)。

MOS管和普通的晶體三極管相比,有以上四項優點,就足以使MOS管在開關運用狀態下完全取代普通的晶體三極管。目前的技術MOS管道VDS能做到1000V,只能作為開關電源的開關管應用,隨著制造工藝的不斷進步,VDS的不斷提高,取代顯像管電視機的行輸出管也是近期能實現的。

推薦閱讀:想要全面了解要MOS管 看這個就夠了(下)

編輯:jq

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 三極管
    +關注

    關注

    143

    文章

    3633

    瀏覽量

    122896
  • 開關電源電路

    關注

    18

    文章

    85

    瀏覽量

    23746
  • 場效應管
    +關注

    關注

    47

    文章

    1177

    瀏覽量

    64775
  • MOS
    MOS
    +關注

    關注

    32

    文章

    1305

    瀏覽量

    94751

原文標題:要吃透MOS管,看這個就夠了!

文章出處:【微信號:fcsde-sh,微信公眾號:fcsde-sh】歡迎添加關注!文章轉載請注明出處。

收藏 6人收藏

    評論

    相關推薦

    想要全面了解MOS這個就夠了(下)

    個小電容器,輸入的開關激勵信號,實際是在對這個電容進行反復的充電、放電的過程,在充放電的過程中,使MOS管道導通和關閉產生了滯后,使“開”與“關”的過程變慢,這是開關元件不能允許的(功耗增加,燒壞開關
    的頭像 發表于 03-25 15:51 ?1w次閱讀
    <b class='flag-5'>想要</b><b class='flag-5'>全面</b><b class='flag-5'>了解</b><b class='flag-5'>要</b><b class='flag-5'>MOS</b><b class='flag-5'>管</b> 看<b class='flag-5'>這個</b>就夠了(下)

    單片機驅動mos電路圖

    了解5V單片機驅動mos電路之前,先了解一下單片機驅動mos電路圖及原理,單片機驅動
    發表于 11-25 14:03 ?8587次閱讀

    MOS的基礎知識(一)

    MOS符號的三個腳的辨認抓住關鍵地方
    發表于 03-31 15:03 ?1084次閱讀
    <b class='flag-5'>MOS</b><b class='flag-5'>管</b>的基礎知識(一)

    MOS開關電路圖分享

    在設計MOS開關電路時,就要充分了解MOS的工作原理。在我一篇文章中,有詳細地講解
    發表于 07-03 15:42 ?2435次閱讀
    <b class='flag-5'>MOS</b><b class='flag-5'>管</b>開關電路圖分享

    搞懂MOS的米勒效應

    通過了解MOS的的開關過程,以及MOS米勒電容的影響,來改進MOS設計。
    的頭像 發表于 07-21 09:19 ?8356次閱讀
    搞懂<b class='flag-5'>MOS</b><b class='flag-5'>管</b>的米勒效應

    全面解析MOS特性、驅動和應用電路

    PMOS,導通后都有導通電阻存在,這樣點電流就會在這個電阻消耗能量,這部分消耗的能量叫做導通損耗。選擇導通電阻小的MOS會減小導通損耗,現在的小功率
    發表于 12-26 21:27

    這個mos的驅動怎么工作的?

    ncp81074a這個mos的驅動看不太懂,為啥珊級加兩個電阻,OUTL和OUTH不是是驅動兩個mos
    發表于 08-10 10:34

    如何解決MOS發熱問題?

    最近,做了一款小功率的開關電源,在進行調試的時候,發現MOS發熱很嚴重,為了解MOS發熱問題,
    的頭像 發表于 08-20 10:34 ?3.7w次閱讀
    如何解決<b class='flag-5'>MOS</b><b class='flag-5'>管</b>發熱問題?

    MOS的原理 MOS的特點

      MOS是由源極、漏極、門極和金屬氧化物層組成,其中金屬氧化物層是MOS的核心部分,它由一層金屬和一層氧化物組成,金屬層和氧化物層之間有一個很小的空隙,
    發表于 02-17 14:51 ?6854次閱讀

    4個方面了解MOS

    MOS原理圖上可以看到,漏極和源極之間有一個寄生二極這個叫體二極,在驅動感性負載(如馬達),這個
    發表于 06-05 14:48 ?452次閱讀
    4個方面<b class='flag-5'>了解</b><b class='flag-5'>MOS</b><b class='flag-5'>管</b>

    MOS的使用方法

    本篇從應用側出發來給大家介紹一下MOS里面最常見的,也是最容易使用的一種用法。首先來看下面一張簡單的圖,我們可以用手去控制這個開關的開合,以此來控制這個燈光的亮滅。如果我們
    的頭像 發表于 04-04 16:15 ?2417次閱讀
    <b class='flag-5'>MOS</b><b class='flag-5'>管</b>的使用方法

    開關電源中MOS柵極拉電阻和下拉電阻的作用

    燒壞,所以加一個拉或者下拉電阻,就是給我們這個GS間的寄生電容提供一個放電的路徑。這樣MOS斷電就會是一個穩定的關閉狀態。
    的頭像 發表于 10-21 10:38 ?3726次閱讀
    開關電源中<b class='flag-5'>MOS</b><b class='flag-5'>管</b>柵極<b class='flag-5'>上</b>拉電阻和下拉電阻的作用

    MOS的開啟與關閉

    MOS 的開啟與關閉 研究這個自舉的由來,我們還是先看一下 MOS 的開啟與關閉。從上文得知,我們首先要分別看一下 NMOS 和 PMO
    的頭像 發表于 11-20 16:27 ?2831次閱讀
    <b class='flag-5'>MOS</b><b class='flag-5'>管</b>的開啟與關閉

    實戰講解:為什么MOS并聯個二極

    可以看到,MOS在D、S極之間并聯了一個二極,有人說這個二極是寄生二極,有人說是體二極
    的頭像 發表于 03-06 08:37 ?4380次閱讀
    實戰講解:為什么<b class='flag-5'>MOS</b><b class='flag-5'>管</b><b class='flag-5'>要</b>并聯個二極<b class='flag-5'>管</b>?

    MOS驅動電路有幾種,看這個就夠了!

    MOS因為其導通內阻低,開關速度快,因此被廣泛應用在開關電源。而用好一個MOS,其驅動電路的設計就很關鍵。下面分享幾種常用的驅動電路。
    的頭像 發表于 02-11 10:39 ?320次閱讀
    <b class='flag-5'>MOS</b><b class='flag-5'>管</b>驅動電路有幾種,看<b class='flag-5'>這個</b>就夠了!
    主站蜘蛛池模板: 欧美一区二区三区久久综 | 国产AV视频一区二区蜜桃 | 狠狠色狠狠色综合日日2019 | 中文字幕无线观看不卡网站 | 精品久久久久久久高清 | 在线观看成人免费视频 | 99热久久这里只有精品 | 国产精品JIZZ视频免费 | 亚洲成a人不卡在线观看 | 色婷婷粉嫩AV精品综合在线 | 99国产在线观看 | 男人狂躁进女人免费视频公交 | 毛片在线看片 | 羞羞影院男女爽爽影院尤物 | 最近的2019中文字幕国语版 | 亚洲专区区免费 | 国产露脸无码A区久久蘑菇 国产露脸无码A区久久 | 邪恶肉肉全彩色无遮琉璃神社 | 亚洲精品高清在线观看 | 永久免费看A片无码网站四虎 | 老人FREE VIODES老少配 | 无套内射在线观看THEPORN | 久久妇女高潮几次MBA | 国产免费怕怕免费视频观看 | 国产精品野外AV久久久 | 天天影视色欲 影视 | 黑人强伦姧人妻日韩那庞大的 | 暖暖免费 高清 日本社区中文 | 伊人久久大线蕉香港三级 | 很黄很色60分钟在线观看 | 暖暖直播免费观看韩国 | 蜜芽一区二区国产精品 | CHINESE熟女老女人HD视频 | 97超在线视频 | 亚洲精品无码不卡 | 久久精品国产欧美日韩99热 | 国产盗摄TP摄像头偷窥 | 两个人看的www免费高清直播 | 91国在线啪精品一区 | 亚洲 小说 欧美 激情 另类 | 羞羞影院午夜男女爽爽免费 |

    電子發燒友

    中國電子工程師最喜歡的網站

    • 2931785位工程師會員交流學習
    • 獲取您個性化的科技前沿技術信息
    • 參加活動獲取豐厚的禮品