一個常用的比喻是,如果說石油是工業的血液,那稀土就是工業的維生素。稀土是寶貴的戰略資源,廣泛應用于尖端科技領域和軍工領域,是“新材料之母”,稀土在我們的日常生活中也無處不在,堪稱“萬能之土”。
3月1日上午,國務院新聞辦就工業和信息化發展情況舉行發布會。工信部部長肖亞慶就工信部起草的《稀土管理條例(征求意見稿)》(下稱“《管理條例》”)回答媒體提問。
此前的1月15日,為依法規范稀土開采、冶煉分離等生產經營秩序,有序開發利用稀土資源,推動稀土行業高質量發展,工信部起草了《稀土管理條例(征求意見稿)》(下稱“《管理條例》”),并在官網公開向社會征求意見。
稀土作為不可再生的稀缺性戰略資源,是17種金屬元素的統稱,素有“工業味精”、“新材料之母”等美譽,廣泛應用于電子信息、石油化工、冶金、機械、能源等行業,更因其在導彈、智能武器、導航儀、噴氣發動機等軍事高新技術上的應用而備受關注。
肖亞慶表示,稀土是一個戰略性資源,發布條例主要是根據稀土長期發展的戰略和市場需求,以及我們在實際發展中存在的問題。
他首先提到,中國是稀土大國,資源量最多,實際我們的產量和出口量也是最多。有些國家指責我們限制稀土出口,但實際上他們買到的稀土大部分都是由中國出口。但是有一個現象值得我們關注,“我們現在稀土沒賣出‘稀’的價格,賣出了‘土’的價格,這是惡性競爭,競相壓價,使得這種寶貴的資源浪費掉。”
第二,稀土的生產確實有不少環保問題。“為了稀土市場好,使勁地采,使勁地挖,使勁地煉,出來以后環境的保護方面還是有很多反應。”
第三,稀土本身是稀有的資源。肖亞慶提到,現在存在無序的開采、資源的浪費,比如只采最富集的那一塊兒,資源的的綜合利用效果很差。從長期來看,用幾年沒有了,資源綜合利用也會有問題。
第四,肖亞慶表示,目前稀土發展低水平重復非常多,而高水平的稀土產品確實比較少,這樣不利于技術創新和科技進步。
肖亞慶最后表示,產業鏈的國際分工、經濟的全球化是一個大趨勢,那么在這個過程中,你中有我中有你,就需要大家攜起手來共同應對。
下面是咱們以前發過的稀土的重要性的一篇文章,重新加入新的內容進行整理了一下。
稀土是一組典型的金屬元素,其之所以異常珍貴,不僅因為儲量稀少、不可再生、分離提純和加工難度較大,更因為其廣泛應用于農業、工業、軍事等行業,是新材料制造的重要依托和關系尖端國防技術開發的關鍵性資源,被稱為“萬能之土”。
稀土礦(圖片來源:新華網)
——工業上,稀土是“維生素”。在熒光、磁性、激光、光纖通信、貯氫能源、超導等材料領域有著不可替代的作用,想替代稀土,除非有極其高超的技術,目前基本做不到。
——軍事上,稀土是“核心”。目前幾乎所有高科技武器都有稀土的身影,且稀土材料常常位于高科技武器的核心部位。例如美國當年的“愛國者”導彈,正是在其制導系統中使用了約3公斤多的釤鈷磁體和釹鐵硼磁體,用于電子束聚焦,才能精確攔截來襲導彈,M1坦克的激光測距機、F-22戰斗機的發動機及輕而堅固的機身等等都有賴于稀土,一位前美軍軍官甚至稱:“海灣戰爭中那些匪夷所思的軍事奇跡,以及美國在冷戰之后,局部戰爭中所表現出的對戰爭進程非對稱性控制能力,從一定意義上說,是稀土成就了這一切。”
——生活中,稀土“無處不在”。我們的手機屏、LED、電腦、數碼相機……哪個沒有使用稀土材料?
據說,當今世界每出現四種新技術,其中之一必與稀土有關!
“中東有石油,中國有稀土”一語道出了中國稀土資源的地位。
然而,“稀土非土”。稀土是一組金屬的簡稱,稀土元素(Rare Earth Elements,REE)從18世紀末葉開始陸續被發現,共有17種,包括化學元素周期表中的15種鑭系元素——鑭(La)、鈰(Ce)、鐠(Pr)、釹(Nd)、钷(Pm)、釤(Sm)、銪(Eu)、釓(Gd)、鋱(Tb)、鏑(Dy)、鈥(Ho)、鉺(Er)、銩(Tm)、鐿(Yb)、镥(Lu),以及與鑭系元素密切相關的兩個元素鈧(Sc)和釔(Y),目前已被廣泛應用于電子、石化、冶金等眾多領域。幾乎每隔3-5年,科學家們就能夠發現稀土的新用途,每六項發明中,就有一項離不開稀土……
中國稀土礦藏豐富,雄踞著三個世界第一:資源儲量第一,占23%左右;產量第一,占世界稀土商品量的80%至90%;銷售量第一,60%至70%的稀土產品出口到國外。同時,中國還是唯一一個能夠提供全部17種稀土金屬的國家,特別是軍事用途極其突出的中重稀土,中國占有的份額讓人艷羨。
稀土是寶貴的戰略資源,有“工業味精”、“新材料之母”之稱,廣泛應用于尖端科技領域和軍工領域。據工業和信息化部介紹,目前稀土永磁、發光、儲氫、催化等功能材料已是先進裝備制造業、新能源、新興產業等高新技術產業不可缺少的原材料,還廣泛應用于電子、石油化工、冶金、機械、新能源、輕工、環境保護、農業等。。
據美國地質調查局2015年資料顯示,世界稀土儲量約為1.3億噸(以稀土氧化物REO計),其中,中國為5500萬噸,巴西2200萬噸,美國為1300萬噸,澳大利亞為210萬噸,印度310萬噸,馬來西亞3萬噸,其他國家合計有4100萬噸。
NA為沒有產量,K表示產量較小(來源:美國統計網)
早在1983年,日本就出臺了稀有礦產戰略儲備制度,其國內83%的稀土來自中國。
再看美國,它的稀土儲量僅次于中國和巴西,但是他的稀土都是輕稀土,稀土分為重稀土和輕稀土,重稀土是很貴重的,輕稀土開采起來很不合算,被業內人士成為假稀土,美國稀土進口量的80%來自中國。
曾經有一種說法是:“中東有石油,中國有稀土”。稀土不但是世界上1/5高科技產品必備的“味精”,更是未來中國在世界談判桌上的一張強有力的底牌籌碼。保護并科學利用好稀土資源,不讓寶貴的稀土資源盲目賤賣出口西方國家,成為近年來諸多仁人志士呼吁的一項國家戰略。
17種稀土元素用途一覽1 鑭用于合金材料和農用薄膜2 鈰大量應用于汽車玻璃3 鐠廣泛應用于陶瓷顏料4 釹廣泛用于航空航天材料5 钷為衛星提供輔助能量6 釤應用于原子能反應堆7 銪制造鏡片和液晶顯示屏8 釓用于醫療核磁共振成像9 鋱用于飛機機翼調節器10 鉺軍事上用于激光測距儀11 鏑用于電影、印刷等照明光源12 鈥用于制作光通訊器件13 銩用于臨床診斷和治療腫瘤14 鐿電腦記憶元件添加劑15 镥用于能源電池技術16 釔制造電線和飛機受力構件17 鈧常用于制造合金詳細情況如下:
1
鑭(La)(念lán)
氯化鑭粉末。(資料圖)
“鑭”這個元素是1839年被命名的,當時有個叫“莫桑德”的瑞典人發現鈰土中含有其它元素,他借用希臘語中“隱藏”一詞把這種元素取名為“鑭”。
鑭的應用非常廣泛,如應用于壓電材料、熱電材料、磁阻材料、發光材料(蘭粉)、貯氫材料、光學玻璃、激光材料、各種合金材料等。鑭也應用到制備許多有機化工產品的催化劑中,光轉換農用薄膜也用到鑭,在國外,科學家把鑭對作物的作用賦與“超級鈣”的美稱。
2
鈰(Ce)(念shì)
鈰可作催化劑、電弧電極、特種玻璃等。鈰的合金耐高熱,可以用來制造噴氣推進器零件。(資料圖)
“鈰”這個元素是由德國人克勞普羅斯,瑞典人烏斯伯齊力、希生格爾于1803年發現并命名的,以紀念1801年發現的小行星——谷神星。
(1)鈰作為玻璃添加劑,能吸收紫外線與紅外線,現已被大量應用于汽車玻璃。不僅能防紫外線,還可降低車內溫度,從而節約空調用電。從1997年起,日本汽車玻璃全加入氧化鈰,1996年用于汽車玻璃的氧化鈰至少有2000噸,美國約1000多噸。
(2)目前正將鈰應用到汽車尾氣凈化催化劑中,可有效防止大量汽車廢氣排到空氣中。美國在這方面的消費量占稀土總消費量的三分之一。
(3)硫化鈰可以取代鉛、鎘等對環境和人類有害的金屬應用到顏料中,可對塑料著色,也可用于涂料、油墨和紙張等行業。目前領先的是法國羅納普朗克公司。
(4)Ce:LiSAF激光系統是美國研制出來的固體激光器,通過監測色氨酸濃度可用于探查生物武器,還可用于醫學。鈰應用領域非常廣泛,幾乎所有的稀土應用領域中都含有鈰。如拋光粉、儲氫材料、熱電材料、鈰鎢電極、陶瓷電容器、壓電陶瓷、鈰碳化硅磨料、燃料電池原料、汽油催化劑、某些永磁材料、各種合金鋼及有色金屬等。
3
鐠(Pr)(念pǔ)
鐠釹合金(資料圖)
大約160年前,瑞典人莫桑德從鑭中發現了一種新的元素,但它不是單一元素,莫桑德發現這種元素的性質與鑭非常相似,便將其定名為“鐠釹”。“鐠釹”希臘語為“雙生子”之意。大約又過了40多年,也就是發明汽燈紗罩的1885年,奧地利人韋爾斯巴赫成功地從“鐠釹”中分離出了兩個元素,一個取名為“釹”,另一個則命名為“鐠”。這種“雙生子”被分隔開了,鐠元素也有了自己施展才華的廣闊天地。鐠是用量較大的稀土元素,其用于玻璃、陶瓷和磁性材料中。
(1)鐠被廣泛應用于建筑陶瓷和日用陶瓷中,其與陶瓷釉混合制成色釉,也可單獨作釉下顏料,制成的顏料呈淡黃色,色調純正、淡雅。
(2)用于制造永磁體。選用廉價的鐠釹金屬代替純釹金屬制造永磁材料,其抗氧性能和機械性能明顯提高,可加工成各種形狀的磁體。廣泛應用于各類電子器件和馬達上。
(3)用于石油催化裂化。以鐠釹富集物的形式加入Y型沸石分子篩中制備石油裂化催化劑,可提高催化劑的活性、選擇性和穩定性。我國70年代開始投入工業使用,用量不斷增大。
(4)鐠還可用于磨料拋光。另外,鐠在光纖領域的用途也越來越廣。
4
釹(Nd)(念nǚ)
伴隨著鐠元素的誕生,釹元素也應運而生,釹元素的到來活躍了稀土領域,在稀土領域中扮演著重要角色,并且左右著稀土市場。
釹元素憑借其在稀土領域中的獨特地位,多年來成為市場關注的熱點。金屬釹的最大用戶是釹鐵硼永磁材料。釹鐵硼永磁體的問世,為稀土高科技領域注入了新的生機與活力。釹鐵硼磁體磁能積高,被稱作當代“永磁之王”,以其優異的性能廣泛用于電子、機械等行業。阿爾法磁譜儀的研制成功,標志著我國釹鐵硼磁體的各項磁性能已跨入世界一流水平。釹還應用于有色金屬材料。在鎂或鋁合金中添加1.5~2.5%釹,可提高合金的高溫性能、氣密性和耐腐蝕性,廣泛用作航空航天材料。另外,摻釹的釔鋁石榴石產生短波激光束,在工業上廣泛用于厚度在10mm以下薄型材料的焊接和切削。在醫療上,摻釹釔鋁石榴石激光器代替手術刀用于摘除手術或消毒創傷口。釹也用于玻璃和陶瓷材料的著色以及橡膠制品的添加劑。
5
钷(Pm)(念pǒ)
钷為核反應堆生產的人造放射性元素(資料圖)
1947年,馬林斯基(J.A.Marinsky)、格倫丹寧(L.E.Glendenin)和科里爾(C.E.Coryell)從原子能反應堆用過的鈾燃料中成功地分離出61號元素,用希臘神話中的神名普羅米修斯(Prometheus)命名為钷(Promethium)。钷為核反應堆生產的人造放射性元素。
(1)可作熱源。為真空探測和人造衛星提供輔助能量。
(2)Pm147放出能量低的β射線,用于制造钷電池。作為導彈制導儀器及鐘表的電源。此種電池體積小,能連續使用數年之久。此外,钷還用于便攜式X-射線儀、制備熒光粉、度量厚度以及航標燈中。
6
釤(Sm)(念shān)
金屬釤(資料圖)
1879年,波依斯包德萊從鈮釔礦得到的“鐠釹”中發現了新的稀土元素,并根據這種礦石的名稱命名為釤。
釤呈淺黃色,是做釤鈷系永磁體的原料,釤鈷磁體是最早得到工業應用的稀土磁體。這種永磁體有SmCo5系和Sm2Co17系兩類。70年代前期發明了SmCo5系,后期發明了Sm2Co17系。現在是以后者的需求為主。釤鈷磁體所用的氧化釤的純度不需太高,從成本方面考慮,主要使用95%左右的產品。此外,氧化釤還用于陶瓷電容器和催化劑方面。另外,釤還具有核性質,可用作原子能反應堆的結構材料,屏敝材料和控制材料,使核裂變產生巨大的能量得以安全利用。
7
銪(Eu)(念yǒu)
氧化銪粉末,氧化銪大部分用于熒光粉(資料圖)(資料圖)
1901年,德馬凱(Eugene-AntoleDemarcay)從“釤”中發現了新元素,取名為銪(Europium) 。這大概是根據歐洲(Europe)一詞命名的。氧化銪大部分用于熒光粉。Eu3+用于紅色熒光粉的激活劑,Eu2+用于藍色熒光粉。現在Y2O2S:Eu3+是發光效率、涂敷穩定性、回收成本等最好的熒光粉。再加上對提高發光效率和對比度等技術的改進,故正在被廣泛應用。近年氧化銪還用于新型X射線醫療診斷系統的受激發射熒光粉。氧化銪還可用于制造有色鏡片和光學濾光片,用于磁泡貯存器件,在原子反應堆的控制材料、屏敝材料和結構材料中也能一展身手。
8
釓(Gd)(念gá)
釓及其同位素都是最有效的中子吸收劑,可用于核反應堆的抑制劑。(資料圖)
1880年,瑞士的馬里格納克(G。de Marignac)將“釤”分離成兩個元素,其中一個由索里特證實是釤元素,另一個元素得到波依斯包德萊的研究確認,1886年,馬里格納克為了紀念釔元素的發現者,研究稀土的先驅荷蘭化學家加多林(Gado Linium),將這個新元素命名為釓。釓在現代技術革新中將起重要作用。
它的主要用途有:(1)其水溶性順磁絡合物在醫療上可提高人體的核磁共振(NMR)成像信號。(2)其硫氧化物可用作特殊亮度的示波管和x射線熒光屏的基質柵網。(3)在釓鎵石榴石中的釓對于磁泡記憶存儲器是理想的單基片。(4)在無Camot循環限制時,可用作固態磁致冷介質。(5)用作控制核電站的連鎖反應級別的抑制劑,以保證核反應的安全。(6)用作釤鈷磁體的添加劑,以保證性能不隨溫度而變化。
9鋱(Tb)(念tè)
氧化鋱粉末(資料圖)
1843年瑞典的莫桑德(Karl G。Mosander)通過對釔土的研究,發現鋱元素(Terbium)。鋱的應用大多涉及高技術領域,是技術密集、知識密集型的尖端項目,又是具有顯著經濟效益的項目,有著誘人的發展前景。
主要應用領域有:
(1)熒光粉用于三基色熒光粉中的綠粉的激活劑,如鋱激活的磷酸鹽基質、鋱激活的硅酸鹽基質、鋱激活的鈰鎂鋁酸鹽基質,在激發狀態下均發出綠色光。
(2)磁光貯存材料,近年來鋱系磁光材料已達到大量生產的規模,用Tb-Fe非晶態薄膜研制的磁光光盤,作計算機存儲元件,存儲能力提高10~15倍。
(3)磁光玻璃,含鋱的法拉第旋光玻璃是制造在激光技術中廣泛應用的旋轉器、隔離器和環形器的關鍵材料。特別是鋱鏑鐵磁致伸縮合金(TerFenol)的開發研制,更是開辟了鋱的新用途,Terfenol是70年代才發現的新型材料,該合金中有一半成份為鋱和鏑,有時加入鈥,其余為鐵,該合金由美國依阿華州阿姆斯實驗室首先研制,當Terfenol置于一個磁場中時,其尺寸的變化比一般磁性材料變化大這種變化可以使一些精密機械運動得以實現。鋱鏑鐵開始主要用于聲納,目前已廣泛應用于多種領域,從燃料噴射系統、液體閥門控制、微定位到機械致動器、機構和飛機太空望遠鏡的調節機翼調節器等領域。
10
鏑(Dy)(念dí)
金屬鏑(資料圖)
1886年,法國人波依斯包德萊成功地將鈥分離成兩個元素,一個仍稱為鈥,而另一個根據從鈥中“難以得到”的意思取名為鏑(dysprosium)。鏑目前在許多高技術領域起著越來越重要的作用。
鏑的最主要用途是:
(1)作為釹鐵硼系永磁體的添加劑使用,在這種磁體中添加2%~3%左右的鏑,可提高其矯頑力,過去鏑的需求量不大,但隨著釹鐵硼磁體需求的增加,它成為必要的添加元素,品位必須在95%~99.9%左右,需求也在迅速增加。
(2)鏑用作熒光粉激活劑,三價鏑是一種有前途的單發光中心三基色發光材料的激活離子,它主要由兩個發射帶組成,一為黃光發射,另一為藍光發射,摻鏑的發光材料可作為三基色熒光粉。
(3)鏑是制備大磁致伸縮合金鋱鏑鐵(Terfenol)合金的必要的金屬原料,能使一些機械運動的精密活動得以實現。
(4)鏑金屬可用做磁光存貯材料,具有較高的記錄速度和讀數敏感度。
(5)用于鏑燈的制備,在鏑燈中采用的工作物質是碘化鏑,這種燈具有亮度大、顏色好、色溫高、體積小、電弧穩定等優點,已用于電影、印刷等照明光源。
(6)由于鏑元素具有中子俘獲截面積大的特性,在原子能工業中用來測定中子能譜或做中子吸收劑。
(7)Dy3Al5O12還可用作磁致冷用磁性工作物質。隨著科學技術的發展,鏑的應用領域將會不斷的拓展和延伸。
11
鈥(Ho)(念huǒ)
鈥鐵合金(資料圖)
十九世紀后半葉,由于光譜分析法的發現和元素周期表的發表,再加上稀土元素電化學分離工藝的進展,更加促進了新的稀土元素的發現。1879年,瑞典人克利夫發現了鈥元素并以瑞典首都斯德哥爾摩地名命名為鈥(holmium)。
鈥的應用領域目前還有待于進一步開發,用量不是很大,最近,包鋼稀土研究院采用高溫高真空蒸餾提純技術,研制出非稀土雜質含量很低的高純金屬鈥Ho/ΣRE》99.9%。
目前鈥的主要用途有:
(1)用作金屬鹵素燈添加劑,金屬鹵素燈是一種氣體放電燈,它是在高壓汞燈基礎上發展起來的,其特點是在燈泡里充有各種不同的稀土鹵化物。目前主要使用的是稀土碘化物,在氣體放電時發出不同的譜線光色。在鈥燈中采用的工作物質是碘化鈥,在電弧區可以獲得較高的金屬原子濃度,從而大大提高了輻射效能。
(2)鈥可以用作釔鐵或釔鋁石榴石的添加劑;
(3)摻鈥的釔鋁石榴石(Ho:YAG)可發射2μm激光,人體組織對2μm激光吸收率高,幾乎比Hd:YAG高3個數量級。所以用Ho:YAG激光器進行醫療手術時,不但可以提高手術效率和精度,而且可使熱損傷區域減至更小。鈥晶體產生的自由光束可消除脂肪而不會產生過大的熱量,從而減少對健康組織產生的熱損傷,據報道美國用鈥激光治療青光眼,可以減少患者手術的痛苦。我國2μm激光晶體的水平已達到國際水平,應大力開發生產這種激光晶體。
(4)在磁致伸縮合金Terfenol-D中,也可以加入少量的鈥,從而降低合金飽和磁化所需的外場。
(5)另外用摻鈥的光纖可以制作光纖激光器、光纖放大器、光纖傳感器等等光通訊器件在光纖通信迅猛的今天將發揮更重要的作用。
12
鉺(Er)(念ěr)
氧化鉺粉末(資料圖)
1843年,瑞典的莫桑德發現了鉺元素(Erbium)。鉺的光學性質非常突出,一直是人們關注的問題:
(1)Er3+在1550nm處的光發射具有特殊意義,因為該波長正好位于光纖通訊的光學纖維的最低損失,鉺離子(Er3+)受到波長980nm、1480nm的光激發后,從基態4I15/2躍遷至高能態4I13/2,當處于高能態的Er3+再躍遷回至基態時發射出1550nm波長的光,石英光纖可傳送各種不同波長的光,但不同的光光衰率不同,1550nm頻帶的光在石英光纖中傳輸時光衰減率最低(0.15分貝/公里),幾乎為下限極限衰減率。因此,光纖通信在1550nm處作信號光時,光損失最小。這樣,如果把適當濃度的鉺摻入合適的基質中,可依據激光原理作用,放大器能夠補償通訊系統中的損耗,因此在需要放大波長1550nm光信號的電訊網絡中,摻鉺光纖放大器是必不可少的光學器件,目前摻鉺的二氧化硅纖維放大器已實現商業化。據報道,為避免無用的吸收,光纖中鉺的摻雜量幾十至幾百ppm。光纖通信的迅猛發展,將開辟鉺的應用新領域。
(2)另外摻鉺的激光晶體及其輸出的1730nm激光和1550nm激光對人的眼睛安全,大氣傳輸性能較好,對戰場的硝煙穿透能力較強,保密性好,不易被敵人探測,照射軍事目標的對比度較大,已制成軍事上用的對人眼安全的便攜式激光測距儀。
(3)Er3+加入到玻璃中可制成稀土玻璃激光材料,是目前輸出脈沖能量最大,輸出功率最高的固體激光材料。
(4)Er3+還可做稀土上轉換激光材料的激活離子。
(5)另外鉺也可應用于眼鏡片玻璃、結晶玻璃的脫色和著色等。
13
銩(Tm)(念diū)
銩在核反應堆內輻照后產生一種能發射X射線的同位素,可制造輕便X光機射線源。(資料圖)
銩元素是1879年瑞典的克利夫發現的,并以斯堪迪那維亞(Scandinavia)的舊名Thule命名為銩(Thulium)。
銩的主要用途有以下幾個方面:
(1)銩用作醫用輕便X光機射線源,銩在核反應堆內輻照后產生一種能發射X射線的同位素,可用來制造便攜式血液輻照儀上,這種輻射儀能使銩-169受到高中子束的作用轉變為銩-170,放射出X射線照射血液并使白血細胞下降,而正是這些白細胞引起器官移植排異反應的,從而減少器官的早期排異反應。
(2)銩元素還可以應用于臨床診斷和治療腫瘤,因為它對腫瘤組織具有較高親合性,重稀土比輕稀土親合性更大,尤其以銩元素的親合力最大。
(3)銩在X射線增感屏用熒光粉中做激活劑LaOBr:Br(藍色),達到增強光學靈敏度,因而降低了X射線對人的照射和危害,與以前鎢酸鈣增感屏相比可降低X射線劑量50%,這在醫學應用具有重要現實的意義。
(4)銩還可在新型照明光源金屬鹵素燈做添加劑。
(5)Tm3+加入到玻璃中可制成稀土玻璃激光材料,這是目前輸出脈沖量最大,輸出功率最高的固體激光材料。Tm3+也可做稀土上轉換激光材料的激活離子。
14
鐿(Yb)(念yì)
金屬鐿(資料圖)1878年,查爾斯(Jean Charles)和馬利格納克(G.deMarignac)在“鉺”中發現了新的稀土元素,這個元素由伊特必(Ytterby)命名為鐿(Ytterbium)。 鐿的主要用途有:
(1)作熱屏蔽涂層材料。鐿能明顯地改善電沉積鋅層的耐蝕性,而且含鐿鍍層比不含鐿鍍層晶粒細小,均勻致密。
(2)作磁致伸縮材料。這種材料具有超磁致伸縮性即在磁場中膨脹的特性。該合金主要由鐿/鐵氧體合金及鏑/鐵氧體合金構成,并加入一定比例的錳,以便產生超磁致伸縮性。
(3)用于測定壓力的鐿元件,試驗證明,鐿元件在標定的壓力范圍內靈敏度高,同時為鐿在壓力測定應用方面開辟了一個新途徑。
(4)磨牙空洞的樹脂基填料,以替換過去普遍使用銀汞合金。
(5)日本學者成功地完成了摻鐿釓鎵石榴石埋置線路波導激光器的制備工作,這一工作的完成對激光技術的進一步發展很有意義。另外,鐿還用于熒光粉激活劑、無線電陶瓷、電子計算機記憶元件(磁泡)添加劑、和玻璃纖維助熔劑以及光學玻璃添加劑等。
15
镥(Lu)(念lǔ)
氧化镥粉末(資料圖)
硅酸釔镥晶體(資料圖)
1907年,韋爾斯巴赫和尤貝恩(G.Urbain)各自進行研究,用不同的分離方法從“鐿”中又發現了一個新元素,韋爾斯巴赫把這個元素取名為Cp(Cassiopeium),尤貝恩根據巴黎的舊名lutece將其命名為Lu(Lutetium)。后來發現Cp和Lu是同一元素,便統一稱為镥。
(1)制造某些特殊合金。例如镥鋁合金可用于中子活化分析。
(2)穩定的镥核素在石油裂化、烷基化、氫化和聚合反應中起催化作用。
(3)釔鐵或釔鋁石榴石的添加元素,改善某些性能。
(4)磁泡貯存器的原料。
(5)一種復合功能晶體摻镥四硼酸鋁釔釹,屬于鹽溶液冷卻生長晶體的技術領域,實驗證明,摻镥NYAB晶體在光學均勻性和激光性能方面均優于NYAB晶體。
(6)經國外有關部門研究發現,镥在電致變色顯示和低維分子半導體中具有潛在的用途。
此外,镥還用于能源電池技術以及熒光粉的激活劑等。
16
釔(Y)(念yǐ)
金屬釔的用途很廣,釔鋁石榴石可用作激光材料,釔鐵石榴石用于微波技術及聲能換送,摻銪的釩酸釔及摻銪的氧化釔用作彩色電視機的熒光粉。(資料圖)
1788年,一位以研究化學和礦物學、收集礦石的業余愛好者瑞典軍官卡爾·阿雷尼烏斯(Karl Arrhenius)在斯德哥爾摩灣外的伊特必村(Ytterby),發現了外觀象瀝青和煤一樣的黑色礦物,按當地的地名命名為伊特必礦(Ytterbite)。1794年芬蘭化學家約翰·加多林分析了這種伊特必礦樣品。發現其中除鈹、硅、鐵的氧化物外,還含有38%的未知元素的氧化物棗“新土”。1797年,瑞典化學家埃克貝格(Anders Gustaf Ekeberg)確認了這種“新土”,命名為釔土(Yttria,釔的氧化物之意)。
(1)鋼鐵及有色合金的添加劑。FeCr合金通常含0.5-4%釔,釔能夠增強這些不銹鋼的抗氧化性和延展性;MB26合金中添加適量的富釔混合稀土后,合金的綜合性能得到明顯的改善,可以替代部分中強鋁合金用于飛機的受力構件上;在Al-Zr合金中加入少量富釔稀土,可提高合金導電率;該合金已為國內大多數電線廠采用;在銅合金中加入釔,提高了導電性和機械強度。
(2)含釔6%和鋁2%的氮化硅陶瓷材料,可用來研制發動機部件。
(3)用功率400瓦的釹釔鋁石榴石激光束來對大型構件進行鉆孔、切削和焊接等機械加工。
(4)由Y-Al石榴石單晶片構成的電子顯微鏡熒光屏,熒光亮度高,對散射光的吸收低,抗高溫和抗機械磨損性能好。
(5)含釔達90%的高釔結構合金,可以應用于航空和其它要求低密度和高熔點的場合。
(6)目前倍受人們關注的摻釔SrZrO3高溫質子傳導材料,對燃料電池、電解池和要求氫溶解度高的氣敏元件的生產具有重要的意義。此外,釔還用于耐高溫噴涂材料、原子能反應堆燃料的稀釋劑、永磁材料添加劑以及電子工業中作吸氣劑等。
17
鈧(Sc)(念kàng)
金屬鈧(資料圖)
1879年,瑞典的化學教授尼爾森(L.F.Nilson,1840~1899)和克萊夫(P.T.Cleve,1840~1905) 差不多同時在稀有的礦物硅鈹釔礦和黑稀金礦中找到了一種新元素。他們給這一元素定名為“Scandium”(鈧),鈧就是門捷列夫當初所預言的“類硼”元素。他們的發現再次證明了元素周期律的正確性和門捷列夫的遠見卓識。
鈧比起釔和鑭系元素來,由于離子半徑特別小,氫氧化物的堿性也特別弱,因此,鈧和稀土元素混在一起時,用氨(或極稀的堿)處理,鈧將首先析出,故應用“分級沉淀”法可比較容易地把它從稀土元素中分離出來。另一種方法是利用硝酸鹽的分極分解進行分離,由于硝酸鈧最容易分解,從而達到分離的目的。
用電解的方法可制得金屬鈧,在煉鈧時將ScCl3、KCl、LiCl共熔,以熔融的鋅為陰極電解之,使鈧在鋅極上析出,然后將鋅蒸去可得金屬鈧。另外,在加工礦石生產鈾、釷和鑭系元素時易回收鈧。鎢、錫礦中綜合回收伴生的鈧也是鈧的重要來源之一。鈧在化合物中主要呈3價態,在空氣中容易氧化成Sc2O3而失去金屬光澤變成暗灰色。
鈧的主要用途有:
(1)鈧能與熱水作用放出氫,也易溶于酸,是一種強還原劑。
(2)鈧的氧化物及氫氧化物只顯堿性,但其鹽灰幾乎不能水解。鈧的氯化物為白色結晶,易溶于水并能在空氣中潮解。
(3)在冶金工業中,鈧常用于制造合金(合金的添加劑),以改善合金的強度、硬度和耐熱和性能。如,在鐵水中加入少量的鈧,可顯著改善鑄鐵的性能,少量的鈧加入鋁中,可改善其強度和耐熱性。
(4)在電子工業中,鈧可用作各種半導體器件,如鈧的亞硫酸鹽在半導體中的應用已引起了國內外的注意,含鈧的鐵氧體在計算機磁芯中也頗有前途。
(5)在化學工業上,用鈧化合物作酒精脫氫及脫水劑,生產乙烯和用廢鹽酸生產氯時的高效催化劑。
(6)在玻璃工業中,可以制造含鈧的特種玻璃。
(7)在電光源工業中,含鈧和鈉制成的鈧鈉燈,具有效率高和光色正的優點。
(8)自然界中鈧均以45Sc形式存在,另外,鈧還有9種放射性同位素,即40~44Sc和46~49Sc。其中,46Sc作為示蹤劑,已在化工、冶金及海洋學等方面使用。在醫學上,國外還有人研究用46Sc來醫治癌癥。
稀土金屬已廣泛應用于電子、石油化工、冶金、機械、能源、輕工、環境保護、農業等領域。應用稀土可生產熒光材料、稀土金屬氫化物電池材料、電光源材料、永磁材料、儲氫材料、催化材料、精密陶瓷材料、激光材料、超導材料、磁致伸縮材料、磁致冷材料、磁光存儲材料、光導纖維材料等。我國擁有豐富的稀土礦產資源,成礦條件優越,堪稱得天獨厚,探明的儲量居世界之首,為發展我國稀土工業提供了堅實的基礎。
稀土萬萬不能再賤賣了!
關于中國“萬能之土”的稀土,大家怎么看?
責任編輯:lq
-
光纖通信
+關注
關注
20文章
492瀏覽量
44772 -
稀土
+關注
關注
0文章
44瀏覽量
13745 -
新材料
+關注
關注
8文章
386瀏覽量
21317
原文標題:痛心!中國稀土沒賣出“稀″的價格,賣出了“土″的價格!
文章出處:【微信號:AMTBBS,微信公眾號:世界先進制造技術論壇】歡迎添加關注!文章轉載請注明出處。
發布評論請先 登錄
相關推薦
評論