色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

利用機器學習識別加密項目風險

姚小熊27 ? 來源:今日頭條 ? 作者:今日頭條 ? 2021-01-22 10:18 ? 次閱讀

加密貨幣是一種存在于數字世界的交易媒介(另一種支付形式),依靠加密技術使交易安全。加密貨幣背后的技術允許用戶直接向他人發送貨幣,而不需要通過第三方,如銀行。為了進行這些交易,用戶需要設置一個數字錢包,而不需要提供身份證號碼或信用評分等個人細節,因此可以讓用戶偽匿名。

對于普通的加密貨幣用戶來說,這種匿名性可以讓他們放心,因為他們的個人信息或交易數據不會被黑客竊取。然而,這種交易匿名性的提高,也容易被犯罪分子濫用,進行洗錢、恐怖融資等非法活動。這種非法活動給區塊鏈錢包用戶以及加密貨幣實體都造成了巨大的損失。雖然金融行動特別工作組(FATF)等監管機構已經在這些實體的監管中引入了標準化的指導方針,但由于每天都有大量的加密貨幣實體和交易發生,監控加密貨幣空間是一項具有挑戰性的任務。

解決方案

因此,人們有興趣利用開源信息,例如新聞網站或社交媒體平臺,來識別可能的安全漏洞或非法活動。在與Lynx Analytics的合作中,我們(來自新加坡國立大學的一個學生團隊)已經致力于開發一個自動工具,以刮取開源信息,預測每篇新聞文章的風險分數,并標記出風險文章。這個工具將被整合到Cylynx平臺(https://www.cylynx.io/)中,這是Lynx Analytics開發的一個工具,用于幫助監管機構通過使用各種信息源監控區塊鏈活動。

開源信息的數據獲取

我們確定了3類開源數據,這些數據可以提供有價值的信息,幫助檢測加密貨幣領域的可疑活動。這些類別是:

傳統的新聞網站,如谷歌新聞,它將報告重大的黑客事件。

加密貨幣專用新聞網站,如Cryptonews和Cointelegraph,它們更有可能報道小型實體和小型安全事件的新聞。

社交媒體網站,如Twitter和Reddit,在官方發布黑客新聞之前,加密貨幣所有者可能會在那里發布有關黑客的消息。

檢索文章和社交媒體帖子的內容,然后建立情緒分析模型。該模型為文章中提到的實體分配了一個風險活動的概率。

情緒分析模型

我們嘗試了四種不同的自然語言處理工具進行情緒分析,即VADER、Word2Vec、fastText和BERT模型。在通過選定的關鍵指標(召回率、精度和F1)對這些模型進行評估后,RoBERTa模型(BERT的一個變種)表現最佳,被選為最終模型。

RoBERTa模型對新聞文章(標題和摘錄)或社交媒體帖子的文本進行處理,并為特定文本分配一個風險分數。由于該文本在數據收集過程中已經被標記為實體,我們現在已經有了加密實體的相關風險指標。在后期,我們將多個文本的風險分數結合起來,給出一個實體的整體風險分數。

RoBERTa原本是一個使用神經網絡結構建立的情感分析模型,我們將最后一層與我們標注的風險分數進行映射,以適應風險評分的環境。為了提高模型在未來文本數據上的通用性,我們進行了幾種文本處理方法,即替換實體、刪除url和替換hash。然后我們使用這個表現最好的模型進行風險評分。

風險評分

現在,每篇文章都有一個相關的來源(news/reddit/twitter),一個風險概率和一個計數,指的是文章被轉發、分享或轉發的次數。為了將這些風險概率轉換為加密貨幣實體的單一風險得分,我們首先將文章的概率值縮放到0到100的范圍內,并獲得每個來源的加權平均值,結合文章的風險得分和計數。加權平均數用于對計數較高的文章給予更大的重視,因為份額數量很可能表明文章的相關性或重要性。

在計算出各來源的風險得分后,我們對各來源的風險得分進行加權求和,得到綜合得分,公式如下:

傳統的新聞來源被賦予了更高的權重,因為這些來源更有可能報道重大的安全漏洞(相對于單個用戶的黑客事件)。

該解決方案的有效性

我們在2020年1月1日至2020年10月30日的174個加密貨幣實體的名單上測試了我們的解決方案,并將結果與該時間段內的已知黑客案例進行了比較。我們發現,我們的風險評分方法表現相當出色,在37個已知的黑客案例中識別了32個。我們還分析了我們的解決方案對單個實體的有效性。下圖顯示了Binance從2020年1月1日至2020年10月30日的風險評分。虛線紅線代表已知的黑客案例。從圖中我們觀察到,我們的解決方案報告了5個已知黑客中的4個黑客的風險得分增加。也有幾個峰值與已知黑客案例不一致。然而,這并不構成一個主要問題,因為對我們的模型來說,更重要的是識別盡可能多的黑客,減少未識別的黑客數量。

有趣的發現

在風險評分過程中,我們注意到,與規模較小的實體相比,規模較大的實體的風險評分往往有較大比例的假陽性記錄。這是因為大型實體被談論得更多,因此會有更多的負面帖子和虛假謠言,從而導致更高的不準確率。

另一個值得強調的有趣趨勢是,圍繞著黑客攻擊通常有幾個明顯的高峰。這是由于不同數據源的反應時間不同。社交媒體網站Twitter和Reddit通常是第一個看到高風險事件發生時的高峰,因為用戶會發帖提出他們觀察到的異常情況,比如一個實體的網站在沒有事先通知用戶的情況下宕機。官方消息一般是在官方聲明之后,稍后才會發布。

局限性

我們發現,我們的解決方案有兩個潛在的局限性,首先是需要不斷地維護收集器。網站設計可能會隨著時間的推移而改變,這些網站的刮擦器需要更新,以確保相關信息仍能被檢索到,從而達到風險評分的目的。

第二個限制是,驗證一篇文章是否已被正確地標記為加密貨幣實體是具有挑戰性的。例如,一篇報道Bancor可疑活動的文章可能也會因為一個不相關的事件提到Binance。我們的解決方案會錯誤地將新聞標記為兩個實體,并將Binance標記為風險,即使它不是文本中的關鍵主題。然而,這并不是一個主要的限制,因為我們只使用新聞文章的標題和摘錄來進行風險評分,這通常只包含文章的關鍵信息。

結語

我們的項目讓監管機構可以輕松挖掘開源信息,更好地識別加密貨幣領域發生的風險事件。我們提供了一個分析文章并預測風險分數的語言模型,以及根據實體和來源信息匯總這些分數的方法。這些方法都被編織成一個可以端到端運行的自動化流水線。將該項目整合到Cylynx平臺中,將對其現有功能進行補充,并為監管機構識別高風險加密貨幣實體提供巨大的幫助。

責任編輯:YYX

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 加密貨幣
    +關注

    關注

    21

    文章

    4522

    瀏覽量

    39779
收藏 人收藏

    評論

    相關推薦

    開源項目!能夠精確地行走、跳舞和執行復雜動作的機器人—Tillu

    的語音識別系統響應語音指令 為什么打造Tillu? 打造Tillu不僅是一個項目,更是一次學習體驗。通過深入探索機器人技術、編程細節以及自定義動作和表情,釋放你的創造力。無論你是學
    發表于 01-02 17:24

    ElfBoard開源項目|百度智能云平臺的人臉識別項目

    百度智能云平臺的人臉識別項目,旨在利用其強大的人臉識別服務實現自動人臉識別。選擇百度智能云的原因是其高效的API接口和穩定的服務質量,能夠幫助開發者快速實現人臉
    的頭像 發表于 12-24 10:54 ?612次閱讀
    ElfBoard開源<b class='flag-5'>項目</b>|百度智能云平臺的人臉<b class='flag-5'>識別項目</b>

    ElfBoard開源項目|車牌識別項目技術文檔

    車牌識別項目基于百度智能云平臺,旨在利用其強大的OCR服務實現車牌號碼的自動識別。選擇百度智能云的原因是其高效的API接口和穩定的服務質量,能夠幫助開發者快速實現車牌識別應用。這個開源
    的頭像 發表于 12-06 10:30 ?314次閱讀
    ElfBoard開源<b class='flag-5'>項目</b>|車牌<b class='flag-5'>識別項目</b>技術文檔

    ASR和機器學習的關系

    自動語音識別(ASR)技術的發展一直是人工智能領域的一個重要分支,它使得機器能夠理解和處理人類語言。隨著機器學習(ML)技術的迅猛發展,ASR系統的性能和準確性得到了顯著提升。 ASR
    的頭像 發表于 11-18 15:16 ?391次閱讀

    什么是機器學習?通過機器學習方法能解決哪些問題?

    來源:Master編程樹“機器學習”最初的研究動機是讓計算機系統具有人的學習能力以便實現人工智能。因為沒有學習能力的系統很難被認為是具有智能的。目前被廣泛采用的
    的頭像 發表于 11-16 01:07 ?507次閱讀
    什么是<b class='flag-5'>機器</b><b class='flag-5'>學習</b>?通過<b class='flag-5'>機器</b><b class='flag-5'>學習</b>方法能解決哪些問題?

    IP風險畫像詳細接入規范、API參數(Ipdatacloud)

    IP數據云的IP風險畫像是基于數據分析和機器學習技術的產品。工作原理是對IP地址的多維度數據進行綜合分析,進而為企業提供全面的IP風險評估和畫像。? IP
    的頭像 發表于 11-15 11:11 ?375次閱讀
    IP<b class='flag-5'>風險</b>畫像詳細接入規范、API參數(Ipdatacloud)

    NPU與機器學習算法的關系

    緊密。 NPU的起源與特點 NPU的概念最早由谷歌在其TPU(Tensor Processing Unit)項目中提出,旨在為TensorFlow框架提供專用的硬件加速。NPU的設計目標是提高機器學習算法的運行效率,特別是在處理
    的頭像 發表于 11-15 09:19 ?596次閱讀

    eda在機器學習中的應用

    機器學習項目中,數據預處理和理解是成功構建模型的關鍵。探索性數據分析(EDA)是這一過程中不可或缺的一部分。 1. 數據清洗 數據清洗 是機器學習
    的頭像 發表于 11-13 10:42 ?385次閱讀

    開源項目!用ESP32做一個可愛的無用機器

    簡介 作者在完成碩士論文答辯后,利用空閑時間制作了一個他一直想做的機器人——可愛無用機器人。 無用機器人原理是一個連接到開關的電機,通過邏輯門控制。當開關被推到“開”時,
    發表于 09-03 09:34

    開源項目!用ESP32做一個可愛的無用機器

    簡介 作者在完成碩士論文答辯后,利用空閑時間制作了一個他一直想做的機器人——可愛無用機器人。 無用機器人原理是一個連接到開關的電機,通過邏輯門控制。當開關被推到“開”時,
    發表于 08-30 14:50

    【《軟件開發珠璣》閱讀體驗】居安思危之風險

    感謝電子發燒友論壇提供的讀書機會。 本書分享了關于軟件開發和管理的 60 條經驗教訓,第32條提到面對風險,要么控制項目風險,要么被它反殺。 1.什么是風險? 知名理財顧問卡爾理查茲曾說:所謂
    發表于 07-09 12:48

    如何利用CNN實現圖像識別

    卷積神經網絡(CNN)是深度學習領域中一種特別適用于圖像識別任務的神經網絡結構。它通過模擬人類視覺系統的處理方式,利用卷積、池化等操作,自動提取圖像中的特征,進而實現高效的圖像識別。本
    的頭像 發表于 07-03 16:16 ?1510次閱讀

    深度學習與傳統機器學習的對比

    在人工智能的浪潮中,機器學習和深度學習無疑是兩大核心驅動力。它們各自以其獨特的方式推動著技術的進步,為眾多領域帶來了革命性的變化。然而,盡管它們都屬于機器
    的頭像 發表于 07-01 11:40 ?1533次閱讀

    請問PSoC? Creator IDE可以支持IMAGIMOB機器學習嗎?

    我的項目使用 POSC62 MCU 進行開發,由于 UDB 模塊是需求的重要組成部分,所以我選擇了PSoC? Creator IDE 來進行項目開發。 但現在,由于需要擴展,我不得不使用機器
    發表于 05-20 08:06

    機器學習怎么進入人工智能

    ,人工智能已成為一個熱門領域,涉及到多個行業和領域,例如語音識別、機器翻譯、圖像識別等。 在編程中進行人工智能的關鍵是使用機器學習算法,這是
    的頭像 發表于 04-04 08:41 ?385次閱讀
    主站蜘蛛池模板: 寂寞护士中文字幕 mp4 | JIZZ19学生第一次 | 色网址在线观看 | 天美传媒在线观看免费完整版 | 国产高清美女一级a毛片久久w | 我半夜摸妺妺的奶C了她 | 亚洲视频在线观看网站 | 中文无码热在线视频 | 中文字幕本庄优花喂奶 | VIDEOSGGRATIS欧美另类 | 空姐被黑人 苏晓曼 | 丁香成人网址 | 99麻豆精品国产人妻无码 | 黑人巨茎vide抽搐 | 国产精品久久精品视 | 中文字幕亚洲欧美日韩2o19 | 国产精品嫩草影院在线观看免费 | 快乐激情网 | 涩涩涩涩爱网站 | 最近在线视频观看2018免费 | 亚洲日韩精品AV中文字幕 | 亚洲中文无码永久免费 | 高清日本片免费观看 | 一个吃奶两个添下面H | 白银谷在线观看 | 亚洲精品123区在线观看 | 国产精品悠悠久久人妻精品 | 国产亚洲精品网站在线视频 | 欧美性最猛xxxx在线观看视频 | 国产乱码精品一区二区三区四川 | 欧美日韩精品不卡在线观看 | 国产乱国产乱老熟300部视频 | 囯产精品麻豆巨作久久 | 欧美亚洲天堂网 | 99久久人妻无码精品系列性欧美 | 国内极度色诱视频网站 | 伊人久久伊人 | 看免费人成va视频全 | 久久国产乱子伦精品免费不卡 | 九色PORNY真实丨国产大胸 | 国产成+人+综合+亚洲不卡 |