色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

清華大學聯(lián)合提出了用于半監(jiān)督學習的圖隨機神經(jīng)網(wǎng)絡(luò)

ss ? 來源:學術(shù)頭條 ? 作者:學術(shù)頭條 ? 2020-12-01 15:25 ? 次閱讀

導讀:在 NeurIPS 2020 上,清華大學聯(lián)合微眾銀行、微軟研究院以及博世人工智能中心提出了 Graph Random Neural Network (GRAND),一種用于圖半監(jiān)督學習的新型圖神經(jīng)網(wǎng)絡(luò)框架。在模型架構(gòu)上,GRAND 提出了一種簡單有效的圖數(shù)據(jù)增強方法 Random Propagation,用來增強模型魯棒性及減輕過平滑。基于 Random Propagation,GRAND 在優(yōu)化過程中使用一致性正則(Consistency Regularization)來增強模型的泛化性,即除了優(yōu)化標簽節(jié)點的 cross-entropy loss 之外,還會優(yōu)化模型在無標簽節(jié)點的多次數(shù)據(jù)增強的預測一致性。GRAND 不僅在理論上有良好的解釋,還在三個公開數(shù)據(jù)集上超越了 14 種不同的 GNN 模型,取得了 SOTA 的效果。

這項研究被收入為 NeurIPS 2020 的 Oral paper (105/9454)。

論文名稱:GraphRandom Neural Network for Semi-Supervised Learning on Graphs

研究背景

圖是用于建模結(jié)構(gòu)化和關(guān)系數(shù)據(jù)的一種通用的數(shù)據(jù)結(jié)構(gòu)。在這項工作中,我們重點研究基于圖的半監(jiān)督學習問題,這個問題的輸入是一個節(jié)點帶屬性的無向圖,其中只有一小部分節(jié)點有標簽,我們的目的是要根據(jù)節(jié)點屬性,圖的結(jié)構(gòu)去預測無標簽節(jié)點的標簽。近幾年來,解決這個問題一類有效的方法是以圖卷積神經(jīng)網(wǎng)絡(luò)(GCN)[1]為代表的圖神經(jīng)網(wǎng)絡(luò)模型(GNN)。其主要思想是通過一個確定性的特征傳播來聚合鄰居節(jié)點的信息,以此來達到對特征降噪的目的。

但是,最近的研究表明,這種傳播過程會帶來一些固有的問題,例如:

1) 過平滑,圖卷積可以看做是一種特殊形式的拉普拉斯平滑,疊加多層之后節(jié)點之間的feature就會變得不可區(qū)分。

2)欠魯棒,GNN中的特征傳播會使得節(jié)點的預測嚴重依賴于特定的鄰居節(jié)點,這樣的模型對噪音的容忍度會很差,例如KDD’18的best paper[2]就表明我們甚至可以通過間接攻擊的方式通過改變目標節(jié)點鄰居的屬性來達到攻擊目標節(jié)點的目的。

3)過擬合,在半監(jiān)督節(jié)點分類的任務(wù)中,有標簽的節(jié)點很少,而一般GNN僅僅依靠這些少量的監(jiān)督信息做訓練,這樣訓練出來的模型泛化能力會比較差。

模型介紹

為了解決這些問題,在這個工作中我們提出了圖隨機神經(jīng)網(wǎng)絡(luò)(GRAND),一種簡單有效的圖半監(jiān)督學習方法。與傳統(tǒng)GNN不同,GRAND采用隨機傳播(Random Propagation)策略。具體來說,我們首先隨機丟棄一些節(jié)點的屬性對節(jié)點特征做一個隨機擾動,然后對擾動后的節(jié)點特征做一個高階傳播。這樣一來,每個節(jié)點的特征就會隨機地與其高階鄰居的特征進交互,這種策略會降低節(jié)點對某些特定節(jié)點的依賴,提升模型的魯棒性。

除此之外,在同質(zhì)圖中,相鄰的節(jié)點往往具有相似的特征及標簽,這樣節(jié)點丟棄的信息就可以被其鄰居的信息補償過來。因此這樣形成的節(jié)點特征就可以看成是一種針對圖數(shù)據(jù)的數(shù)據(jù)增強方法。基于這種傳播方法,我們進而設(shè)計了基于一致性正則(consistency regularization)的訓練方法,即每次訓練時進行多次Random Propagation 生成多個不同的節(jié)點增強表示,然后將這些增強表示輸入到一個MLP中,除了優(yōu)化交叉熵損失之外,我們還會去優(yōu)化MLP模型對多個數(shù)據(jù)增強產(chǎn)生預測結(jié)果的一致性。這種一致性正則損失無需標簽,可以使模型利用充足的無標簽數(shù)據(jù),以彌補半監(jiān)督任務(wù)中監(jiān)督信息少的不足,提升模型的泛化能力,減小過擬合的風險。

圖一

圖二

我們對GRAND進行了理論分析,分析結(jié)果表明,這種Random propagation + Consistency Regularization 的訓練方式實際上是在優(yōu)化模型對節(jié)點與其鄰居節(jié)點預測置信度之間的一致性。

實驗結(jié)果

我們在GNN基準數(shù)據(jù)集中的實驗結(jié)果對GRAND進行了評測,實驗結(jié)果顯示GRAND在3個公開數(shù)據(jù)集中顯著超越了14種不同種類的GNN模型,取得了SOTA的效果。實驗結(jié)果(圖三):

圖三

此外我們還對模型泛化性,魯棒性,過平滑等問題進行了分析,實驗結(jié)果顯示1)Consistency Regularization 和Random Propagation均能提升模型的泛化能力(圖四);2)GRAND具有更好的對抗魯棒性(圖五);3)GRAND可以減輕過平滑問題(圖六)。

圖四

圖五

圖六

責任編輯:xj

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
收藏 人收藏

    評論

    相關(guān)推薦

    清華大學師生到訪智行者科技交流學習

    近日,清華大學 “技術(shù)創(chuàng)新原理與實踐” 研究生課程師生一行到訪智行者進行交流學習。作為課程實踐環(huán)節(jié)的重要一站,此次來訪開啟了一場深度的參觀學習之旅。智行者董事長&CEO張德兆先生作為清華
    的頭像 發(fā)表于 12-23 11:39 ?401次閱讀

    博世與清華大學續(xù)簽人工智能研究合作協(xié)議

    近日,博世與清華大學宣布,雙方續(xù)簽人工智能領(lǐng)域的研究合作協(xié)議,為期五年。在此期間,博世將投入5000萬元人民幣。基于2020年成立的清華大學—博世機器學習聯(lián)合研究中心(以下簡稱“
    的頭像 發(fā)表于 11-20 11:37 ?401次閱讀

    SynSense時識科技與海南大學聯(lián)合研究成果發(fā)布

    近日,SynSense時識科技與海南大學聯(lián)合在影響因子高達7.7的國際知名期刊《Computers in Biology and Medicine》上發(fā)表了最新研究成果,展示了如何用低維信號通用類腦
    的頭像 發(fā)表于 10-23 14:40 ?350次閱讀
    SynSense時識科技與海南<b class='flag-5'>大學聯(lián)合</b>研究成果發(fā)布

    【《大語言模型應用指南》閱讀體驗】+ 基礎(chǔ)篇

    章節(jié)最后總結(jié)了機器學習的分類:有監(jiān)督學習、無監(jiān)督學習監(jiān)督學習、自監(jiān)督學習和強化
    發(fā)表于 07-25 14:33

    BP神經(jīng)網(wǎng)絡(luò)學習機制

    BP神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural Network),即反向傳播神經(jīng)網(wǎng)絡(luò),是一種基于梯度下降算法的多層前饋神經(jīng)網(wǎng)絡(luò),其學習機制的核心在于通過反向傳播算法
    的頭像 發(fā)表于 07-10 15:49 ?703次閱讀

    神經(jīng)網(wǎng)絡(luò)如何用無監(jiān)督算法訓練

    神經(jīng)網(wǎng)絡(luò)作為深度學習的重要組成部分,其訓練方式多樣,其中無監(jiān)督學習是一種重要的訓練策略。無監(jiān)督學習旨在從未標記的數(shù)據(jù)中發(fā)現(xiàn)數(shù)據(jù)內(nèi)在的結(jié)構(gòu)、模式或規(guī)律,從而提取有用的特征表示。這種訓練方
    的頭像 發(fā)表于 07-09 18:06 ?880次閱讀

    前饋神經(jīng)網(wǎng)絡(luò)的基本結(jié)構(gòu)和常見激活函數(shù)

    和激活函數(shù)的非線性變換,能夠學習和模擬復雜的函數(shù)映射,從而解決各種監(jiān)督學習任務(wù)。本文將詳細闡述前饋神經(jīng)網(wǎng)絡(luò)的基本結(jié)構(gòu),包括其組成層、權(quán)重和偏置、激活函數(shù)等,并介紹幾種常見的激活函數(shù)及其特性。
    的頭像 發(fā)表于 07-09 10:31 ?1036次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)與循環(huán)神經(jīng)網(wǎng)絡(luò)的區(qū)別

    在深度學習領(lǐng)域,卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks, CNN)和循環(huán)神經(jīng)網(wǎng)絡(luò)(Recurrent Neural Networks, RNN)是兩種極其重要
    的頭像 發(fā)表于 07-03 16:12 ?3633次閱讀

    反向傳播神經(jīng)網(wǎng)絡(luò)和bp神經(jīng)網(wǎng)絡(luò)的區(qū)別

    神經(jīng)網(wǎng)絡(luò)在許多領(lǐng)域都有廣泛的應用,如語音識別、圖像識別、自然語言處理等。然而,BP神經(jīng)網(wǎng)絡(luò)也存在一些問題,如容易陷入局部最優(yōu)解、訓練時間長、對初始權(quán)重敏感等。為了解決這些問題,研究者們提出了一些改進的BP
    的頭像 發(fā)表于 07-03 11:00 ?857次閱讀

    如何使用神經(jīng)網(wǎng)絡(luò)進行建模和預測

    神經(jīng)網(wǎng)絡(luò)是一種強大的機器學習技術(shù),可以用于建模和預測變量之間的關(guān)系。 神經(jīng)網(wǎng)絡(luò)的基本概念 神經(jīng)網(wǎng)絡(luò)是一種受人腦啟發(fā)的計算模型,由大量的節(jié)點(
    的頭像 發(fā)表于 07-03 10:23 ?823次閱讀

    神經(jīng)網(wǎng)絡(luò)反向傳播算法原理是什么

    神經(jīng)網(wǎng)絡(luò)反向傳播算法(Backpropagation Algorithm)是一種用于訓練多層前饋神經(jīng)網(wǎng)絡(luò)監(jiān)督學習算法。它通過最小化損失函數(shù)來調(diào)整網(wǎng)
    的頭像 發(fā)表于 07-02 14:16 ?743次閱讀

    神經(jīng)網(wǎng)絡(luò)架構(gòu)有哪些

    神經(jīng)網(wǎng)絡(luò)架構(gòu)是機器學習領(lǐng)域中的核心組成部分,它們模仿了生物神經(jīng)網(wǎng)絡(luò)的運作方式,通過復雜的網(wǎng)絡(luò)結(jié)構(gòu)實現(xiàn)信息的處理、存儲和傳遞。隨著深度學習技術(shù)
    的頭像 發(fā)表于 07-01 14:16 ?839次閱讀

    鼾聲監(jiān)測神經(jīng)網(wǎng)絡(luò)

    自動打鼾檢測的混合卷積神經(jīng)網(wǎng)絡(luò)(CNN)模型。該模型由處理原始信號的一維(1D)CNN和表示通過可見性方法映射的圖像的二維(2D)CNN組成。在我們的實驗中,我們的算法實現(xiàn)了89.3%的平均
    發(fā)表于 05-15 12:14

    助聽器降噪神經(jīng)網(wǎng)絡(luò)模型

    抑制任務(wù)是語音增強領(lǐng)域的一個重要學科, 隨著深度神經(jīng)網(wǎng)絡(luò)的興起,提出了幾種基于深度模型的音頻處理新方法[1,2,3,4]。然而,這些通常是為離線處理而開發(fā)的,不需要考慮實時性。當使用神經(jīng)網(wǎng)絡(luò)
    發(fā)表于 05-11 17:15

    清華大學聯(lián)合中交興路發(fā)布《中國公路貨運大數(shù)據(jù)碳排放報告》

    為踐行并推動實現(xiàn)“雙碳”目標,清華大學聯(lián)合中交興路發(fā)布《中國公路貨運大數(shù)據(jù)碳排放報告》(以下簡稱:《報告》)。
    的頭像 發(fā)表于 05-09 14:47 ?396次閱讀
    <b class='flag-5'>清華大學聯(lián)合</b>中交興路發(fā)布《中國公路貨運大數(shù)據(jù)碳排放報告》
    主站蜘蛛池模板: 亚洲综合中文字幕无线码 | 把她带到密室调教性奴 | 亚洲视频欧美在线专区 | 久久久精品久久久久三级 | 久久久亚洲国产精品主播 | 国产最新精品亚洲2021不卡 | 成人免费观看在线视频 | 国产亚洲欧美在线中文BT天堂网 | 97精品在线播放 | 国产成人mv 在线播放 | 花蝴蝶在线观看中字 | 116美女写真午夜电影z | 性夜夜春夜夜爽AA片A | 欲奴第一季在线观看全集 | 在线精品一卡乱码免费 | 三级黄色在线 | 97视频免费观看 | 一级毛片在线免费视频 | 国产精品99re6热在线播放 | 日本在线免费 | 全免费午夜一级毛片 | 黑色丝袜在线观看 | 91精品福利一区二区 | 九热这里只有精品 | WWW亚洲精品久久久无码 | 久久久久久亚洲精品影院 | 国产激情视频在线播放 | 国模大胆一区二区三区 | 亚洲中字慕日产2020 | 午夜福利体检 | 久久超碰色中文字幕 | 国产高清视频免费在线观看 | 99人精品福利在线观看 | 四虎永久在线精品国产免费 | 一个人在线观看免费中文www | 乱精品一区字幕二区 | 偷窥wc美女毛茸茸视频 | YELLOW视频直播在线观看高清 | 看电影来5566一区.二区 | 国产极品美女视频福利 | 国产成人一区二区三区在线观看 |