色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

利用圖像處理與機(jī)器視覺技術(shù)開發(fā)一套安全氣囊檢測系統(tǒng)

新機(jī)器視覺 ? 來源:新機(jī)器視覺 ? 作者:陳水酉,何炳蔚, ? 2020-11-27 09:11 ? 次閱讀

摘要

利用圖像處理與機(jī)器視覺技術(shù)開發(fā)了一套安全氣囊檢測系統(tǒng),實(shí)現(xiàn)了對安全氣囊生產(chǎn)過程某一工位處關(guān)鍵尺寸的亞像素測量。介紹了該檢測系統(tǒng)的總體組成和主要工作流程; 分別介紹了該系統(tǒng)的軟硬件設(shè)計(jì); 并選取實(shí)際氣囊對所開發(fā)的檢測系統(tǒng)進(jìn)行了可行性、有效性的驗(yàn)證。通過實(shí)驗(yàn)表明該系統(tǒng)的檢測結(jié)果符合實(shí)際生產(chǎn)的要求。

21 世紀(jì)以來,汽車行業(yè)發(fā)展迅猛。安全氣囊作為汽車的安全輔助工具,它的出現(xiàn)大大降低了死亡率,因而必須確保其尺寸精確,并能正常使用。對安全氣囊傳統(tǒng)的檢 測方法主要是借助千分表、輪廓儀等工具進(jìn)行人工抽檢[1]。然而在長時(shí)間、大批量的工作模式下,工作人員由于身體條件、視覺疲勞等因素,造成產(chǎn)品誤檢率高,極大地 限制了生產(chǎn)效率和產(chǎn)品質(zhì)量。

針對上述情況,開發(fā)了一套基于機(jī)器視覺的安全氣囊檢測系統(tǒng),實(shí)現(xiàn)對安全氣囊關(guān)鍵尺寸的亞像素測量。該系統(tǒng)具有非接觸、實(shí)時(shí)、高精度、高效率的特點(diǎn),可有效降低企業(yè)的人工成本,同時(shí)減少誤檢率和漏檢率,提高企業(yè)的生產(chǎn)效率和經(jīng)濟(jì)效益。

1

視覺檢測系統(tǒng)設(shè)計(jì)

1.1 尺寸測量技術(shù)要求

待檢測對象安全氣囊的實(shí)物圖如圖 1 所示。對氣囊進(jìn)行檢測主要是對其外輪廓尺寸大小和預(yù)縫線間距進(jìn)行測量,具體要求如下: (1)對氣囊外輪廓尺寸進(jìn)行測量,測量誤差范圍為±0.5 mm。 (2) 對預(yù)縫線間距進(jìn)行測量,測量誤差范圍為±0.5mm。 針對以上需求,設(shè)計(jì)并開發(fā)了一套基于機(jī)器視覺的氣囊尺寸檢 測系統(tǒng)。示例中的氣囊外輪廓尺寸為 205.55mm,預(yù)縫線間距為 140.16 mm。

圖 1 待檢測的安全氣囊實(shí)物圖

1.2 系統(tǒng)的工作原理

視覺檢測系統(tǒng)主要由光源、相機(jī)、計(jì)算機(jī)、執(zhí)行機(jī)構(gòu)等部分組合而成[2],如圖 2 所示。其工作原理是: 照明光源發(fā)出平行光照射在檢測工件上,工業(yè)相機(jī)采集圖像,將光信號(hào)轉(zhuǎn)換成圖像數(shù)據(jù)傳送給計(jì)算機(jī),由計(jì)算機(jī)完成圖像處理、分析和計(jì)算等,并將處理結(jié)果以信號(hào)的形式發(fā)送給執(zhí)行機(jī)構(gòu),指導(dǎo)機(jī)器的運(yùn)行。

1.3 系統(tǒng)的結(jié)構(gòu)設(shè)計(jì)

該視覺系統(tǒng)的結(jié)構(gòu)設(shè)計(jì)主要從硬件系統(tǒng)和軟件系統(tǒng)兩方面展開。

圖 2 視覺檢測系統(tǒng)的原理圖

硬件系統(tǒng)包含機(jī)械裝置、圖像采集子系統(tǒng)以及計(jì)算機(jī)等部分,其中圖像采集子系統(tǒng)是整個(gè)硬件系統(tǒng)的核心模塊,由光源、相機(jī)以及照明系統(tǒng)等復(fù)合而成,其任務(wù)是對工件進(jìn)行圖像數(shù)據(jù)采集[3]。對圖像采集子系統(tǒng)的設(shè)計(jì)主要從相機(jī)和光源的選型、光照模式的設(shè)計(jì)等兩個(gè)方面入手。根據(jù)檢測工件的表面屬性和幾何外形,結(jié)合檢測指標(biāo)為外輪廓尺寸和預(yù)縫線間距測量,決定選用 MER- 503- 20GM / C-P 相機(jī),選擇線性 LED 條形光源,以垂直照射的方式進(jìn)行照明,如圖 3( a) 所示。

軟件系統(tǒng)是基于 Window 操作系統(tǒng)平臺(tái),依托 Visual Studio 2013 中 MFC 和開源圖像處理庫 OpenCV2.4.9 設(shè)計(jì)的 UI 界面,主要包括視頻顯示、圖像結(jié)果顯示、識(shí)別與測量及設(shè)備控制等功能模塊,如圖 3( b) 所示。圖中左側(cè)兩個(gè)窗口分別為“視頻顯示窗口”和“圖像結(jié)果顯示窗口”;界面右側(cè)從上到下依次是“串口通信窗口”、“設(shè)備控制窗 口”、“檢測識(shí)別與測量窗口”以及“檢測結(jié)果顯示窗口”。

圖 3 檢測系統(tǒng)的結(jié)構(gòu)設(shè)計(jì)

2

檢測原理與算法實(shí)現(xiàn)

針對氣囊的尺寸測量,采用基于灰度圖像的邊緣特征,通過濾波與增強(qiáng),改善圖像質(zhì)量,銳化邊緣細(xì)節(jié),并通 過亞像素定位技術(shù),提高邊緣定位精度,最后通過對邊緣 的直線擬合和直方圖投影,進(jìn)行尺寸測量,整個(gè)檢測算法 流程如圖 4 所示。

圖 4 氣囊尺寸測量算法流程圖

2.1 圖像濾波

在進(jìn)行圖像采集和數(shù)據(jù)傳輸時(shí),因受到圖像傳感器質(zhì)量、環(huán)境光照等因素的影響,常常會(huì)引入無關(guān)的噪聲,不利于后續(xù)圖像識(shí)別。圖 5 所示為采集圖像的外輪廓和預(yù)縫線區(qū)域的局部圖,可以看出圖像含有大量的噪聲點(diǎn)。

圖 5 原始圖像

在圖像處理中,主要運(yùn)用圖像濾波進(jìn)行噪聲點(diǎn)的去除。目前,常用的濾波方法有高斯濾波、均值濾波和中值 濾波等。采用上述 3 種濾波方法分別對工件圖像進(jìn)行處理,同時(shí)以峰值信噪比( PSNR)[4]作為質(zhì)量評(píng)價(jià)指標(biāo),最終決定采用高斯濾波對圖像進(jìn)行去噪處理。

高斯濾波是一種廣泛使用的線性平滑濾波器,主要思路是對整幅圖像進(jìn)行加權(quán)平均,從而消除噪聲點(diǎn)的影響, 其具體操作是: 通過高斯核的離散化窗口滑窗卷積來實(shí)現(xiàn),高斯核是一個(gè)奇數(shù)的大小高斯模板。

高斯模板中的各個(gè)參數(shù)主要通過二維高斯函數(shù)計(jì)算給出,其具體公式如下:

式中 δ 表示標(biāo)準(zhǔn)差。標(biāo)準(zhǔn)差 δ 越小,表示濾波平滑效果越不明顯。

采用高斯濾波對采集圖像進(jìn)行噪聲點(diǎn)的去除,效果如 圖 6 所示,可以看到噪聲點(diǎn)被平滑處理掉,圖像質(zhì)量得到明顯改善。

圖6 高斯濾波后的圖像

2.2 圖像增強(qiáng)

經(jīng)過高斯濾波之后的圖像,噪聲點(diǎn)被濾除,但是由于引入平均的效果,使得邊緣細(xì)節(jié)變得模糊。為了抵消這種模糊的因素,應(yīng)該增強(qiáng)圖像的對比度。采用 Laplace 算子, 對圖像邊緣進(jìn)行銳化處理。

Laplace 算子是一種各向同性的二階微分算子[5],而圖像的邊緣灰度是階躍變化的,在數(shù)學(xué)上表示為其二階導(dǎo)數(shù)過零點(diǎn),故可利用 Laplace 算子對進(jìn)行圖像銳化,可以有效地定位邊緣點(diǎn),并通過加強(qiáng)邊緣的灰度值,使圖像的對 比度增強(qiáng),同時(shí)使邊緣細(xì)節(jié)得到提升。

如圖 7 所示,經(jīng)過 Laplace 算子增強(qiáng)后,可以發(fā)現(xiàn)圖像的對比度得到了提高,預(yù)縫線和外輪邊緣也更加清晰,有利于后續(xù)圖像邊緣的檢測。

圖7 Laplace 圖像增強(qiáng)后的效果

2.3 邊緣檢測

圖像邊緣指的是其周圍像素灰度急劇變化的那些像 素的集合,它主要存在于目標(biāo)、背景與區(qū)域之間,對圖像進(jìn) 行邊緣檢測是圖像識(shí)別的重要步驟[6]。采用亞像素技術(shù) 對像素級(jí)邊緣進(jìn)行精細(xì)再分,提高了圖像的分辨率,具體 實(shí)現(xiàn)過程如下:

(1)粗定位階段,以像素為單位,進(jìn)行傳統(tǒng)的邊緣檢測;

(2)精定位階段,采用圖像處理算法,實(shí)現(xiàn)像素精細(xì)劃分。在粗定位階段,傳統(tǒng)的像素級(jí)邊緣檢測算子主要有:

Roberts 算子、Prewitt 算子、Sobel 算子、Log 算子、Canny 算子等[7]。從定位精度和邊緣細(xì)節(jié)兩方面,對比上述檢測算子的檢測效果,如圖 8 所示,可以發(fā)現(xiàn) Roberts 算子、Prewitt 算子、Sobel 算子檢測結(jié)果相似,能夠準(zhǔn)確定位邊緣,但是邊緣細(xì)節(jié)模糊,而 Canny 算子檢測效果最佳,定位精度高,邊緣連續(xù)性強(qiáng),故在粗定位階段采用 Canny 算子進(jìn)行邊緣檢測。

在精定位階段,采用基于 Zernike 矩的亞像素邊緣檢測算法,并對階躍閾值的選擇進(jìn)行改進(jìn),利用 Otsu 法( 大津法) 確定最佳分割閾值 T 作為階躍閾值,對檢測邊緣進(jìn)行精確定位。

改進(jìn)的 Zernike 矩邊緣檢測算法具體步驟如下。步驟 1: 計(jì)算 Zernike 矩的 Z00、Z11、Z20;

步驟2: 根據(jù)公式( 2) ,計(jì)算出Φ的值;

Φ= tan-1( Im[Z11]/Re[Z11]) ( 2)

步驟3: 利用Zernike 矩的旋轉(zhuǎn)不變性,求得Z'00、Z'11、Z'20;

步驟5: 利用Otsu 法確定最佳分割閾值作為階躍閾值 T; 步驟 6: 取距離閾值 δ,若滿足條件 k ≥T 且 h≤δ,則該像素點(diǎn)即為邊緣點(diǎn)。

通過 Otsu 法確定最佳分割閾值 T = 86,并設(shè)置距離閾值 δ 為一個(gè)像素單位,進(jìn)行亞像素邊緣檢測,如圖 9 所示。可以看出采用改進(jìn)的 Zernike 矩邊緣檢測算法提取的圖像邊緣無毛刺,且連續(xù)性更強(qiáng),為后續(xù)的高精度尺寸測量提供了保證。

圖9 改進(jìn)的Zernike 矩邊緣檢測效果圖

2.4 尺寸測量

通過對氣囊的邊緣圖像進(jìn)行分析,發(fā)現(xiàn)外輪廓具有波 浪形邊緣,而預(yù)縫線邊緣具有明顯的傾斜角度,并且含有 線頭邊緣,對測量產(chǎn)生極大的干擾,針對以上問題,分別提 出了基于直線擬合和直方圖投影的測量算法,檢測效果如 圖 10 所示。

圖 10 氣囊尺寸測量效果圖

1)直線擬合測量算法

對于外輪廓的尺寸測量,其核心步驟在于對輪廓的擬 合,最小二乘法是最常見的直線擬合方法,其具體步驟如下。

步驟 1: 采集圖像上、下邊緣,采用最小二乘法擬合基準(zhǔn)直線 L1 和 L2;

步驟 2: 計(jì)算中心點(diǎn)( x0,y0) ,將上邊緣 x 坐標(biāo)均值作為 x0,根據(jù)直線 L2方程獲取中心點(diǎn)位置;

步驟 3: 利用該中心點(diǎn)的基準(zhǔn)直線 L1的距離,進(jìn)行測距。

2)直方圖投影算法

首先對工件的邊緣圖像進(jìn)行輪廓提取,同時(shí)獲得每個(gè)輪廓的最小外接矩形,再依據(jù)面積和長寬比等幾何特征, 定位預(yù)縫線檢測區(qū)域 R1和 R2,并記錄其左上角頂點(diǎn)坐標(biāo),如圖 10 所示。

對定位出的預(yù)縫線區(qū)域,進(jìn)行直方圖投影,其具體步驟是: 首先遍歷 ROI 區(qū)域 R1和 R2,統(tǒng)計(jì)區(qū)域內(nèi)非 0 值像素的個(gè)數(shù) Ni,以行數(shù)為橫坐標(biāo),Ni 為縱坐標(biāo),繪制直方圖,并記錄直方圖最大值所在位置行數(shù),計(jì)為 I1max 和 I2max,如圖 11 所示。結(jié)合 ROI 區(qū)域的位置坐標(biāo),作差即可求得預(yù)縫線間距。

圖11 預(yù)縫線像素直方圖

3

實(shí)驗(yàn)結(jié)果與分析

對本視覺系統(tǒng)進(jìn)行重復(fù)性測量實(shí)驗(yàn),即將氣囊在相機(jī)視野中任意位置擺放 10 次,采用檢測系統(tǒng)對氣囊進(jìn)行尺寸測量,并計(jì)算其測量均值和標(biāo)準(zhǔn)差,測量結(jié)果如表 1 所示。

通過表 1 可知,外輪廓測量均值為 205.55 mm,其標(biāo)準(zhǔn)偏差為 0.0317 mm,預(yù)縫線間距測量均值為 140.15 mm,標(biāo)準(zhǔn)偏差為 0.023 5 mm,標(biāo)準(zhǔn)偏差均在± 0.05 mm 之間,滿足了生產(chǎn)實(shí)際的精度要求。同時(shí)為了更加直觀體現(xiàn),繪制其檢測結(jié)果折線圖如圖 12 所示。

圖12 零件檢測結(jié)果折線圖

由圖 12 可知雖然該系統(tǒng)測得的數(shù)據(jù)整體比較理想, 測量結(jié)果基本在測量均值附近,但是也有個(gè)別數(shù)據(jù)會(huì)產(chǎn)生波動(dòng),出現(xiàn)這種情況,主要有以下幾個(gè)方面原因:

鏡頭誤差。由于鏡頭制造工藝的限制,使得鏡頭存在畸變,在光學(xué)成像時(shí)產(chǎn)生一定的誤差。

環(huán)境誤差。受到環(huán)境光照的影響,使得被測工件的邊緣亮度和陰影產(chǎn)生變化,這將導(dǎo)致在邊緣提取時(shí)產(chǎn)生 一定的誤差。

算法誤差。對外輪廓進(jìn)行直線擬合時(shí),由于輪廓具有波浪形邊緣,使得擬合出的結(jié)果會(huì)存在一定的誤差。

4

結(jié)論

根據(jù)安全氣囊安全尺寸的檢測要求,開發(fā)了一套視覺檢測系統(tǒng),該系統(tǒng)采用改進(jìn)的Zernike 矩的亞像素邊緣算法,實(shí)現(xiàn)邊緣的精確定位,提高了測量精度。針對工件兩個(gè)不同的測量指標(biāo),分別提出了基于直線擬合的點(diǎn)測距和基于直方圖投影測距的測量方法。在實(shí)例驗(yàn)證下, 檢測精度符合工業(yè)生產(chǎn)要求,有效地提高了生產(chǎn)效率和產(chǎn)品質(zhì)量。

參考文獻(xiàn)

[1] 季瑩. 安全氣囊的技術(shù)現(xiàn)狀與發(fā)展趨勢[J]. 汽車與配件,2012( 10) : 34-37.

[2] WESLEY E,SNYDER,HARIONG Qi. Machine vision[M]. Camb: Cambridge University Press,2005.

[3] 章煒. 機(jī)器視覺技術(shù)發(fā)展及其工業(yè)應(yīng)用[J]. 紅外技術(shù),2006,27( 2) : 11-16.

[4] 劉國陽. 基于機(jī)器視覺的微小零件尺寸測量技術(shù)研究[D].哈爾濱: 哈爾濱工業(yè)大學(xué),2014.

[5] 周文舉. 基于機(jī)器視覺的在線高速檢測與精確控制研究與應(yīng)用[D]. 上海: 上海大學(xué),2013.

[6] 左敦穩(wěn). 視覺技術(shù)在智能機(jī)械加工中的應(yīng)用研究[J]. 機(jī)械制造與自動(dòng)化,2018,47( 6) : 1-6.

[7] 汪田. 基于機(jī)器視覺的油泵殼體尺寸測量系統(tǒng)[D]. 杭州: 浙江大學(xué),2018.

責(zé)任編輯:xj

原文標(biāo)題:基于機(jī)器視覺的安全氣囊檢測系統(tǒng)研究

文章出處:【微信公眾號(hào):新機(jī)器視覺】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報(bào)投訴
  • 機(jī)器視覺
    +關(guān)注

    關(guān)注

    162

    文章

    4375

    瀏覽量

    120357
  • 安全氣囊
    +關(guān)注

    關(guān)注

    1

    文章

    72

    瀏覽量

    18802
  • 亞像素
    +關(guān)注

    關(guān)注

    0

    文章

    4

    瀏覽量

    6716

原文標(biāo)題:基于機(jī)器視覺的安全氣囊檢測系統(tǒng)研究

文章出處:【微信號(hào):vision263com,微信公眾號(hào):新機(jī)器視覺】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評(píng)論

    相關(guān)推薦

    應(yīng)用在汽車控制系統(tǒng)安全氣囊的愛普生可編程晶振SG-8018CG

    在汽車安全領(lǐng)域,安全氣囊是保護(hù)駕乘人員生命安全的關(guān)鍵防線。而作為安全氣囊控制系統(tǒng)的關(guān)鍵元件——愛普生可編程晶振SG-8018CG,以其卓越的
    的頭像 發(fā)表于 10-30 16:27 ?179次閱讀
    應(yīng)用在汽車控制<b class='flag-5'>系統(tǒng)安全氣囊</b>的愛普生可編程晶振SG-8018CG

    視覺檢測是什么意思?機(jī)器視覺檢測的適用行業(yè)及場景有哪些?

    檢測的定義與原理 機(jī)器視覺檢測,是利用光學(xué)成像、數(shù)字信號(hào)處理和計(jì)算機(jī)
    的頭像 發(fā)表于 08-30 11:20 ?379次閱讀

    機(jī)器視覺在焊接質(zhì)量檢測中的應(yīng)用

    的可能性。今天跟隨創(chuàng)想智控小編起了解機(jī)器視覺在焊接質(zhì)量檢測中的應(yīng)用。 1. 機(jī)器視覺原理
    的頭像 發(fā)表于 08-13 16:33 ?279次閱讀

    什么是機(jī)器視覺opencv?它有哪些優(yōu)勢?

    機(jī)器視覺(Machine Vision)是利用計(jì)算機(jī)和圖像處理
    的頭像 發(fā)表于 07-16 10:33 ?796次閱讀

    機(jī)器視覺的應(yīng)用實(shí)例解析

    機(jī)器視覺利用計(jì)算機(jī)視覺技術(shù)圖像進(jìn)行
    的頭像 發(fā)表于 07-16 10:19 ?470次閱讀

    機(jī)器視覺檢測系統(tǒng)的關(guān)鍵技術(shù)和應(yīng)用場景

    隨著人工智能技術(shù)的飛速發(fā)展,機(jī)器視覺作為其中的重要組成部分,正逐漸滲透到工業(yè)制造、自動(dòng)駕駛、醫(yī)療診斷、農(nóng)業(yè)自動(dòng)化等多個(gè)領(lǐng)域。基于深度學(xué)習(xí)的機(jī)器視覺
    的頭像 發(fā)表于 07-08 10:33 ?1420次閱讀

    圖像檢測與識(shí)別技術(shù)的關(guān)系

    檢測技術(shù)是指利用計(jì)算機(jī)視覺技術(shù),對圖像中的特定目標(biāo)進(jìn)行定位和識(shí)別的過程。它通常包括
    的頭像 發(fā)表于 07-03 14:43 ?657次閱讀

    基于FPGA EtherCAT的六自由度機(jī)器視覺伺服控制設(shè)計(jì)

    人、Zynq和攝像頭為硬件基礎(chǔ),搭建了六自由度機(jī)器視覺平臺(tái)。 (2)設(shè)計(jì)了基于 FPGA的視覺檢測方案。利用 西林提供的 HLS和CV庫
    發(fā)表于 05-29 16:17

    AI視覺檢測系統(tǒng)在多方面實(shí)現(xiàn)技術(shù)創(chuàng)新

    電子發(fā)燒友網(wǎng)報(bào)道(文/李彎彎)AI視覺檢測系統(tǒng)種基于AI技術(shù)視覺分析
    的頭像 發(fā)表于 05-24 00:16 ?3376次閱讀

    山子高科旗下美國ARC持續(xù)創(chuàng)新,安全氣囊技術(shù)引領(lǐng)行業(yè)風(fēng)向標(biāo)

    技術(shù)的創(chuàng)新與發(fā)展。 ? 近年來,隨著汽車市場的不斷擴(kuò)大和消費(fèi)者對汽車安全性能要求的提高,安全氣囊作為汽車被動(dòng)安全系統(tǒng)的關(guān)鍵組成部分,其性能和質(zhì)量越來越受到關(guān)注。美國ARC公司緊跟市場趨
    的頭像 發(fā)表于 05-09 15:46 ?584次閱讀

    安全氣囊新篇章:美國ARC公司與延鋒汽車達(dá)成戰(zhàn)略合作

    延鋒汽車達(dá)成戰(zhàn)略合作,共同推動(dòng)汽車安全技術(shù)的創(chuàng)新與發(fā)展。美國ARC安全氣囊以其卓越的性能和可靠性,贏得了全球汽車制造商的廣泛認(rèn)可。此次與延鋒汽車的合作,將進(jìn)步加強(qiáng)雙方在汽車
    的頭像 發(fā)表于 04-17 13:11 ?466次閱讀

    機(jī)器視覺圖像采集卡的功能與應(yīng)用

    機(jī)器視覺技術(shù)廣泛應(yīng)用于工業(yè)生產(chǎn)檢測、醫(yī)療、交通等領(lǐng)域助力實(shí)現(xiàn)自動(dòng)化、智能化。整個(gè)機(jī)器視覺系統(tǒng)可分
    的頭像 發(fā)表于 04-04 08:33 ?965次閱讀
    <b class='flag-5'>機(jī)器</b><b class='flag-5'>視覺</b>中<b class='flag-5'>圖像</b>采集卡的功能與應(yīng)用

    機(jī)器視覺圖像采集卡:關(guān)鍵的圖像處理設(shè)備

    機(jī)器視覺圖像采集卡是種用于采集和處理圖像數(shù)據(jù)的關(guān)鍵設(shè)備,它在現(xiàn)代工業(yè)生產(chǎn)和科學(xué)研究中起著至關(guān)重
    的頭像 發(fā)表于 02-22 16:23 ?507次閱讀
    <b class='flag-5'>機(jī)器</b><b class='flag-5'>視覺</b><b class='flag-5'>圖像</b>采集卡:關(guān)鍵的<b class='flag-5'>圖像</b><b class='flag-5'>處理</b>設(shè)備

    賽默斐視表面瑕疵檢測系統(tǒng)利用機(jī)器視覺技術(shù)

    表面瑕疵檢測系統(tǒng)利用機(jī)器視覺技術(shù)
    的頭像 發(fā)表于 01-25 15:47 ?315次閱讀

    焊接視覺檢測系統(tǒng)的原理和應(yīng)用

    工業(yè)生產(chǎn)中的重要性和應(yīng)用情況。 焊接視覺檢測是基于機(jī)器視覺圖像處理
    的頭像 發(fā)表于 01-16 14:15 ?655次閱讀
    焊接<b class='flag-5'>視覺</b><b class='flag-5'>檢測</b><b class='flag-5'>系統(tǒng)</b>的原理和應(yīng)用
    主站蜘蛛池模板: 琪琪电影午夜理论片77网| 高H黄暴NP辣H一女多男| 嫩草影院久久99| 国产免费内射又粗又爽密桃视频| 伊人久久大香线蕉综合网站| 人人超碰97caoporen国产| 久草在在线免视频在线观看| 国产69精品久久久久观看软件| 中文字AV字幕在线观看| 学生妹被爆插到高潮无遮挡| 青青青国产依人精品视频| 老湿影院色情a| 精品久久免费视频| 国产精品美女WWW爽爽爽视频| 99精品视频在线观看re| 永久免费毛片| 亚洲精品另类有吗中文字幕| 少妇伦子伦精品无码| 欧美重口绿帽video| 麻花传媒XK在线观看| 精品伊人久久久| 国模沟沟一区二区三区| 国产国拍精品AV在线观看| YELLOW视频直播在线观看| 97视频在线观看免费视频| 中国拍三a级的明星女| 亚洲视频免费在线观看| 亚洲成在人线视频| 小莹的性荡生活40章| 甜性涩爱下载| 思思re热免费精品视频66| 日韩精品一区VR观看 | 免费国产成人手机在线观看| 久久精品电影| 九九热免费在线观看| 好男人在线高清WWW免费观看| 国产免费怕怕免费视频观看| 国产极品白嫩超清在线观看| 国产成人精品精品欧美| 国产精品A久久777777| 国产免费久久精品国产传媒|