人臉識別技術(shù)介紹
人臉識別作為一種生物特征識別技術(shù),具有非侵擾性、非接觸性、友好性和便捷性等優(yōu)點。早在二十世紀初期,人臉識別已經(jīng)出現(xiàn),于二十世紀中期,發(fā)展成為獨立的學科。人臉識別真正進入應(yīng)用階段是在90年代后期。人臉識別屬于人臉匹配的領(lǐng)域,人臉匹配的方法主要包括特征表示和相似性度量。
人臉識別通用的流程主要包括人臉檢測、人臉裁剪、人臉校正、特征提取和人臉識別。人臉檢測是從獲取的圖像中去除干擾,提取人臉信息,獲取人臉圖像位置,檢測的成功率主要受圖像質(zhì)量,光線強弱和遮擋等因素影響。獲取人臉后,人臉裁剪是根據(jù)實際需求,裁剪部分或整體的人臉,進一步精確化人臉圖像。為提高人臉識別準確率,人臉校正可以盡可能的降低由于姿態(tài)和表情導致的人臉變化,獲取正面或者平靜狀態(tài)下的人臉照片。特征提取利用不同的特征,對圖片進行相似度的衡量和評價。人臉識別主要包括一對一或者一對多的應(yīng)用場景,對目標人臉進行識別和驗證。
人臉表達模型主要分為2D,2.5D,3D。2D人臉指的是RGB,灰度和紅外圖像,是確定視角下表征顏色或紋理的圖像,不包括深度信息。2.5D是在某一視角下拍攝獲取的人臉深度數(shù)據(jù),但是曲面信息不連續(xù),沒有被遮擋部分的深度數(shù)據(jù)信息。3D人臉由多張不同角度的深度圖像合成,具有完整連續(xù)的曲面信息,包含深度信息。2D圖像人臉識別的研究時間較長,軟硬件技術(shù)較為完備,得到了廣泛的應(yīng)用。但是由于2D圖像反映二維平面信息,不包含深度數(shù)據(jù),不能夠完整的表達出真實人臉模型。相比于二維人臉圖像,三維圖像不受光照等影響,具有更強的描述能力,能夠更為真實的反映人臉信息,在人臉合成、人臉遷移、三維人臉識別等場景中應(yīng)用。3D人臉識別一般采用深度相機獲取人臉深度信息,主要包括雙目相機,基于結(jié)構(gòu)光原理的RGB-D相機和基于光飛行時間原理的TOF相機。
1.傳統(tǒng)識別方法
(1)基于點云數(shù)據(jù)的人臉識別
點云是3D人臉數(shù)據(jù)的一種表征方式,每一個點都對應(yīng)一個三維坐標,掃描設(shè)備使用這種數(shù)據(jù)格式存儲采集的三維人臉信息,甚至可以將稀疏坐標也拼接到形狀信息上,更為完善的反映人臉信息。基于點云數(shù)據(jù)的3D人臉識別直接使用三維點云進行匹配,常見方法有ICP(IterativeClosestPoint)和Hausdorff距離。前者可以修正點云信息中平移和旋轉(zhuǎn)變換的誤差,后者利用三維點云之間的距離最大值,匹配人臉,但是兩者均存在魯棒性不足的問題。
(2)基于面部特征的3D人臉識別
人臉的面部特征主要包括局部特征和全局特征,局部特征可以選擇從深度圖像上提取關(guān)于面部關(guān)鍵點的特征信息,全局特征是對整張人臉進行變換提取特征,例如球面諧波特征或者稀疏系數(shù)特征。
2.深度學習識別方法
(1)基于深度圖的人臉識別
深度圖像中三維數(shù)據(jù)的z值被投影至二維平面,形成平滑的三維曲面。可使用歸一化網(wǎng)絡(luò)和特征提取網(wǎng)絡(luò)實現(xiàn)深度圖人臉識別,歸一化網(wǎng)絡(luò)將輸入的深度圖像轉(zhuǎn)化為HHA圖像,再使用卷積神經(jīng)網(wǎng)絡(luò)回歸用于獲取歸一化深度圖的參數(shù),特征提取網(wǎng)絡(luò)用于獲取表征深度圖人臉的特征向量。
(2)基于RGB-3DMM的人臉識別
3DMM是指三維人臉變形統(tǒng)計模型,其最早是用于解決從二維人臉圖像恢復三維形狀的問題,現(xiàn)多被用于對深度圖像或彩色圖像進行人臉模型回歸,實現(xiàn)識別任務(wù)。
(3)基于RGB-D的人臉識別
RGB-D圖像是包含了彩色圖像和深度圖,前者是從紅、綠、藍顏色通道獲取的圖像,后者是指包含與視點的場景對象的表面的距離有關(guān)的圖像通道,兩者之間是相互配準。通過對彩色圖像和多幀融合后的深度圖像分別進行預訓練和遷移學習,在特征層進行融合,提高人臉識別率。
責任編輯人:CC
-
三維
+關(guān)注
關(guān)注
1文章
512瀏覽量
29022 -
人臉識別
+關(guān)注
關(guān)注
76文章
4015瀏覽量
82164 -
人臉識別算法
+關(guān)注
關(guān)注
0文章
10瀏覽量
2702
發(fā)布評論請先 登錄
相關(guān)推薦
評論