當(dāng)面對數(shù)以千計(jì)的熱敏電阻類型時(shí),選型可能會造成相當(dāng)大的困難。在這篇技術(shù)文章中,我將為您介紹選擇熱敏電阻時(shí)需牢記的一些重要參數(shù),尤其是當(dāng)要在兩種常用的用于溫度傳感的熱敏電阻類型(負(fù)溫度系數(shù)NTC熱敏電阻或硅基線性熱敏電阻)之間做出決定時(shí)。NTC熱敏電阻由于價(jià)格低廉而廣泛使用,但在極端溫度下提供精度較低。硅基線性熱敏電阻可在更寬溫度范圍內(nèi)提供更佳性能和更高精度,但通常其價(jià)格較高。下文中我們將會介紹,正在市場投放中的其他線性熱敏電阻,可以提供更具成本效益的高性能選件,幫助解決廣泛的溫度傳感需求的同時(shí)不會增加解決方案的總體成本。
適用于您應(yīng)用的熱敏電阻將取決于許多參數(shù),例如:
物料清單(BOM)成本。
電阻容差。
校準(zhǔn)點(diǎn)。
靈敏度(每攝氏度電阻的變化)。
自熱和傳感器漂移。
物料清單成本
熱敏電阻本身的價(jià)格并不昂貴。由于它們是離散的,因此可以通過使用額外的電路來改變其電壓降。例如,如果您使用的是非線性的NTC熱敏電阻,且希望在設(shè)備上出現(xiàn)線性電壓降,則可選擇添加額外的電阻器幫助實(shí)現(xiàn)此特性。但是,另一種可降低BOM和解決方案總成本的替代方案是使用自身提供所需壓降的線性熱敏電阻。好消息是,借助我們的新型線性熱敏電阻系列,這兩。這意味著工程師可以簡化設(shè)計(jì)、降低系統(tǒng)成本并將印刷電路板(PCB)的布局尺寸至少減少33%。
電阻容差
熱敏電阻按其在25°C時(shí)的電阻容差進(jìn)行分類,但這并不能完全說明它們?nèi)绾坞S溫度變化。您可以使用設(shè)計(jì)工具或數(shù)據(jù)表中的器件電阻與溫度(R-T)表中提供的最小、典型和最大電阻值來計(jì)算相關(guān)的特定溫度范圍內(nèi)的容差。
為了說明容差如何隨熱敏電阻技術(shù)的變化而變化,讓我們比較一下NTC和我們的基于TMP61硅基熱敏電阻,它們的額定電阻容差均為±1%。當(dāng)溫度偏離25°C時(shí),兩個(gè)器件的電阻容差都會增加,但在極端溫度下兩者之間會有很大差異。計(jì)算此差異非常重要,這樣您就可選擇相關(guān)溫度范圍內(nèi)保持較低容差的器件。
校準(zhǔn)點(diǎn)
并不知曉熱敏電阻在其電阻容差范圍內(nèi)的位置會降低系統(tǒng)性能,因?yàn)槟枰蟮恼`差范圍。校準(zhǔn)將告知您期望的電阻值,這可幫助您大幅減少誤差范圍。但是,這是制造過程中的一個(gè)附加步驟,因此應(yīng)盡量將校準(zhǔn)保持在更低水平。
校準(zhǔn)點(diǎn)的數(shù)量取決于所使用的熱敏電阻類型以及應(yīng)用的溫度范圍。對于較窄的溫度范圍,一個(gè)校準(zhǔn)點(diǎn)適用于大多數(shù)熱敏電阻。對于需要寬溫度范圍的應(yīng)用,您有兩種選擇:1)使用NTC校準(zhǔn)三次(這是由于它們在極端溫度下的靈敏度低且有較高電阻容差),或2)使用硅基線性熱敏電阻校準(zhǔn)一次,其比NTC更加穩(wěn)定。
靈敏度
當(dāng)試圖從熱敏電阻獲得良好精度時(shí),每攝氏度電阻(靈敏度)出現(xiàn)較大變化只是其中一個(gè)難題。但是,除非您通過校準(zhǔn)或選擇低電阻容差的熱敏電阻在軟件中獲得正確的電阻值,否則較大的靈敏度也將無濟(jì)于事。
由于NTC電阻值呈指數(shù)下降,因此在低溫下具有極高的靈敏度,但是隨著溫度升高,靈敏度也會急劇下降。硅基線性熱敏電阻的靈敏度不像NTC那樣高,因此它可在整個(gè)溫度范圍內(nèi)進(jìn)行穩(wěn)定測量。隨著溫度升高,硅基線性熱敏電阻的靈敏度通常在約60°C時(shí)超過NTC的靈敏度。
自熱和傳感器漂移
熱敏電阻以熱量形式散發(fā)能耗,這會影響其測量精度。散發(fā)的熱量取決于許多參數(shù),包括材料成分和流經(jīng)器件的電流。
傳感器漂移是熱敏電阻隨時(shí)間漂移的量,通常通過電阻值百分比變化給出的加速壽命測試在數(shù)據(jù)表中指定。如果您的應(yīng)用要求使用壽命較長,且靈敏度和精度始終如一,請選擇具有較低自熱且傳感器漂移小的熱敏電阻。
那么,您應(yīng)該何時(shí)在NTC上使用像TMP61這樣的硅線性熱敏電阻呢?
查看表1,您可以發(fā)現(xiàn):相同價(jià)格下,幾乎在硅基線性熱敏電阻的規(guī)定工作溫度范圍內(nèi)的任何情況下,硅基線性熱敏電阻都可以從其線性和穩(wěn)定性中獲益。硅基線性熱敏電阻也有商用和汽車用兩種版本,并采用表面貼裝器件NTC通用標(biāo)準(zhǔn)0402和0603封裝。
參數(shù) | NTC熱敏電阻 | TI硅基線性熱敏電阻 |
物料清單成本 |
低至中: 熱敏電阻的低成本 可能需要額外的線性化電路 |
低: 熱敏電阻的低成本 無需額外的線性化電路 |
電阻容差 |
大: 25°C時(shí)容差與極端溫度之間的巨大差異 |
小: 整個(gè)溫度范圍內(nèi),較小±1.5%最大容差 |
靈敏度 |
不一致: 低溫下非常大 隨著溫度的升高急劇下降 |
一致: 在整個(gè)溫度范圍內(nèi)保持穩(wěn)定的靈敏度 高于通常超過60°C的NTC |
Calibration points 校準(zhǔn)點(diǎn) |
多點(diǎn): 廣泛應(yīng)用需要多個(gè)點(diǎn) |
一個(gè)點(diǎn): 廣泛應(yīng)用僅需一個(gè)點(diǎn) |
自熱和傳感器漂移 |
高: 隨溫度增加功耗 傳感器漂移大 |
最小: 隨溫度降低功耗 傳感器漂移小 |
表1:NTC與TI硅基線性熱敏電阻
有關(guān)TI熱敏電阻的完整R-T表以及帶有示例代碼的簡便溫度轉(zhuǎn)換方法,請下載我們的熱敏電阻設(shè)計(jì)工具。
審核編輯 黃昊宇
-
傳感器
+關(guān)注
關(guān)注
2552文章
51228瀏覽量
754682 -
熱敏電阻
+關(guān)注
關(guān)注
14文章
1172瀏覽量
101570
發(fā)布評論請先 登錄
相關(guān)推薦
評論