IGBT(Insulated Gate Bipolar Transistor),絕緣柵雙極型晶體管,約占電機驅動系統成本的一半,而電機驅動系統占整車成本的15-20%,也就是說IGBT占整車成本的7-10%,是除電池之外成本第二高的元件,也決定了整車的能源效率。
2016年全球電動車銷量大約200萬輛,共消耗了大約9億美元的IGBT管,平均每輛車大約450美元,是電動車里除電池外最昂貴的部件。 其中,混合動力和PHEV大約77萬輛,每輛車需要大約300美元的IGBT,純電動車大約123萬輛,平均每輛車使用540美元的IGBT,大功率的純電公交車用的IGBT可能超過1000美元。2017年全球純電動汽車銷量達到123萬輛,中國市場份額超過50%,增存量市場空間巨大。
什么是 IGBT?
IGBT是由BJT(雙極型三極管)和MOS(絕緣柵型場效應管)組成的復合全控型電壓驅動式功率半導體器件。 與以前的各種電力電子器件相比,IGBT具有以下特點:高輸入阻抗,可采用通用低成本的驅動線路;高速開關特性;導通狀態低損耗。 IGBT兼有MOSFET的高輸入阻抗和GTR的低導通壓降兩方面的優點, 在綜合性能方面占有明顯優勢,非常適合應用于直流電壓為600V及以上的變流系統如交流電機、變頻器、開關電源、照明電路、牽引傳動等領域。
對于混合動力,除驅動電機外,另外還有一個發電機,可以由汽車的發動機帶動其發電,然后通過IGBT模塊AC/DC轉換后向電池充電。在DM車型中,該發電機還可以充當驅動電機的作用。
IGBT最常見的形式其實是模塊(Module),而不是單管。模塊的基本特征:多個芯片以絕緣方式組裝到金屬基板上;空心塑殼封裝,與空氣的隔絕材料是高壓硅脂或者硅脂,以及其他可能的軟性絕緣材料;同一個制造商、同一技術系列的產品,IGBT模塊的技術特性與同等規格的IGBT 單管基本相同。
模塊的主要優勢有:多個IGBT芯片并聯,IGBT的電流規格更大。多個IGBT芯片按照特定的電路形式組合,如半橋、全橋等,可以減少外部電路連接的復雜性。多個IGBT芯片處于同一個金屬基板上,等于是在獨立的散熱器與IGBT芯片之間增加了一塊均熱板,工作更可靠。一個模塊內的多個IGBT芯片經過了模塊制造商的篩選,其參數一致性比市售分立元件要好。模塊中多個IGBT芯片之間的連接與多個分立形式的單管進行外部連接相比,電路布局更好,引線電感更小。
模塊的外部引線端子更適合高壓和大電流連接。同一制造商的同系列產品,模塊的最高電壓等級一般會比IGBT 單管高1-2個等級,如果單管產品的最高電壓規格為1700V,則模塊有2500V、3300V 乃至更高電壓規格的產品。
晶圓上的一個最小全功能單元稱為Cell,晶圓分割后的最小單元,構成IGBT 單管或者模塊的一個單元的芯片單元,合稱為IGBT的管芯。一個IGBT管芯稱為模塊的一個單元,也稱為模塊單元、模塊的管芯。模塊單元與IGBT管芯的區別在最終產品,模塊單元沒有獨立的封裝,而管芯都有獨立的封裝,成為一個IGBT管。 近來還有一種叫IPM的模塊,把門級驅動和保護電路也封裝進IGBT模塊內部,不過工作頻率自然不能太高咯。 單管的價格要遠低于模塊,但是單管的可靠性遠不及模塊。
IGBT的關鍵有兩點,一是散熱,二是背板工藝。 IGBT的正面工藝和標準BCD的LDMOS沒區別,區別在背面,背面工藝有幾點,首先是減薄,大約需要減薄6-8毫米,減得太多容易碎片,減得太少沒有效果。接下來是離子注入,注入一層薄磷做緩沖層,第四代需要兩次注入磷,本來硅片就很薄了,兩次注入很容易碎片。 然后是清洗,接下來金屬化,在背面蒸鍍一層鈦或銀,最后是Alloy,因為硅片太薄,很容易翹曲或碎片。
這些工藝不僅需要長期摸索,同時還需要針對工藝開發生產設備,只有對生產線和設備都非常精通的企業才能勝任。
自第六代以后,IGBT自身的潛力已經挖掘的差不多了,大家都把精力轉移到IGBT的封裝上,也就是散熱。 車用IGBT的散熱效率要求比工業級要高得多,逆變器內溫度最高可達大20度,同時還要考慮強振動條件,車規級的IGBT遠在工業級之上。
解決散熱的第一點,就是提高 IGBT模塊內部的導熱導電性能、耐受功率循環的能力, IGBT模塊內部引線技術經歷了粗鋁線鍵合、 鋁帶鍵合再到銅線鍵合的過程,提高了載流密度。
第二點,新的焊接工藝,傳統焊料為錫鉛合金, 成本低廉、工藝簡單, 但存在環境污染問題, 且車用功率模塊的芯片溫度已經接近錫鉛焊料熔點(220℃)。 解決該問題的新技術主要有:低溫銀燒結技術和瞬態液相擴散焊接。與傳統工藝相比, 銀燒結技術的導熱性、耐熱性更好, 具有更高的可靠性。 瞬態液相擴散焊接通過特殊工藝形成金屬合金層, 熔點比傳統焊料高, 機械性能更好。
第三點,改進DBC和模塊底板,降低散熱熱阻, 提高熱可靠性, 減小體積,降低成本等。以 AlN 和 AlSiC 等材料取代 DBC 中的Al2O3和Si3N4等常規陶瓷,熱導率更高,與Si 材料的熱膨脹系數匹配更好。
此外,新型的散熱結構,如 Pin Fin結構 和 Shower Power結構, 能夠顯著降低模塊的整體熱阻,提高散熱效率。
第四點,就是擴大模塊與散熱底板間的連接面積,如端子壓接技術。
散熱的關鍵是材料,GBT的下一代SiC(碳化硅)技術已經嶄露頭角, SiC能將新能源車的效率再提高10%,這是新能源車提高效率最有效的技術
使用SiC元器件能讓設備體積更小,功耗更低。因具備高耐壓、高耐熱特性,使在小空間和嚴酷環境下的安裝成為可能。應用于混合動力汽車和電動汽車,可大幅降低油耗,擴大車內空間,從而有更多空間設置更大的電池,有效提高行駛距離。
羅姆的SiC器件可以大幅降低逆變器的能量損耗,并且隨著體積的減小,對新能源汽車的性能提升有著非常大的幫助。
審核編輯黃昊宇
-
IGBT
+關注
關注
1267文章
3809瀏覽量
249384
發布評論請先 登錄
相關推薦
評論