色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

12個(gè)將神經(jīng)網(wǎng)絡(luò)畫(huà)地更好看的工具

智能感知與物聯(lián)網(wǎng)技術(shù)研究所 ? 來(lái)源:通信信號(hào)處理研究所 ? 2020-06-13 14:10 ? 次閱讀

本文介紹了了12個(gè)將神經(jīng)網(wǎng)絡(luò)畫(huà)地更好看的工具。

1. draw_convnet

一個(gè)用于畫(huà)卷積神經(jīng)網(wǎng)絡(luò)的Python腳本

https://github.com/gwding/draw_convnet

2. NNSVG

http://alexlenail.me/NN-SVG/LeNet.html

3.PlotNeuralNet

https://github.com/HarisIqbal88/PlotNeuralNet

使用latex來(lái)展示神經(jīng)網(wǎng)絡(luò)

4.Tensorboard

https://www.tensorflow.org/tensorboard/graphs

5.Caffe

https://github.com/BVLC/caffe/blob/master/python/caffe/draw.py

使用Caffe/draw.py

6.Matlab

http://www.mathworks.com/help/nnet/ref/view.html

7.Keras.js

https://transcranial.github.io/keras-js/#/inception-v3

8. DotNet

https://github.com/martisak/dotnets

9.Graphviz

http://www.graphviz.org/

10.ConX

https://conx.readthedocs.io/en/latest/index.html

11.ENNUI

https://math.mit.edu/ennui/

12.Neataptic

https://wagenaartje.github.io/neataptic/

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 神經(jīng)網(wǎng)絡(luò)

    關(guān)注

    42

    文章

    4772

    瀏覽量

    100802
  • python
    +關(guān)注

    關(guān)注

    56

    文章

    4797

    瀏覽量

    84720

原文標(biāo)題:論文必備 | 12個(gè)神經(jīng)網(wǎng)絡(luò)可視化工具

文章出處:【微信號(hào):tyutcsplab,微信公眾號(hào):智能感知與物聯(lián)網(wǎng)技術(shù)研究所】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏

    評(píng)論

    相關(guān)推薦

    如何編寫(xiě)一個(gè)BP神經(jīng)網(wǎng)絡(luò)

    傳播過(guò)程,即誤差從輸出層反向傳播回輸入層,并據(jù)此調(diào)整網(wǎng)絡(luò)參數(shù)。本文詳細(xì)闡述如何編寫(xiě)一個(gè)BP神經(jīng)網(wǎng)絡(luò),包括網(wǎng)絡(luò)結(jié)構(gòu)設(shè)計(jì)、前向傳播、損失函數(shù)計(jì)
    的頭像 發(fā)表于 07-11 16:44 ?565次閱讀

    BP神經(jīng)網(wǎng)絡(luò)和卷積神經(jīng)網(wǎng)絡(luò)的關(guān)系

    廣泛應(yīng)用的神經(jīng)網(wǎng)絡(luò)模型。它們各自具有獨(dú)特的特點(diǎn)和優(yōu)勢(shì),并在不同的應(yīng)用場(chǎng)景中發(fā)揮著重要作用。以下是對(duì)BP神經(jīng)網(wǎng)絡(luò)和卷積神經(jīng)網(wǎng)絡(luò)關(guān)系的詳細(xì)探討,內(nèi)容涵蓋兩者的定義、原理、區(qū)別、聯(lián)系以及應(yīng)
    的頭像 發(fā)表于 07-10 15:24 ?1551次閱讀

    BP神經(jīng)網(wǎng)絡(luò)和人工神經(jīng)網(wǎng)絡(luò)的區(qū)別

    BP神經(jīng)網(wǎng)絡(luò)和人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Networks,簡(jiǎn)稱ANNs)之間的關(guān)系與區(qū)別,是神經(jīng)網(wǎng)絡(luò)領(lǐng)域中一個(gè)基礎(chǔ)且重要的話題。本文將從定義、結(jié)構(gòu)、算法、應(yīng)用及
    的頭像 發(fā)表于 07-10 15:20 ?1108次閱讀

    PyTorch神經(jīng)網(wǎng)絡(luò)模型構(gòu)建過(guò)程

    PyTorch,作為一個(gè)廣泛使用的開(kāi)源深度學(xué)習(xí)庫(kù),提供了豐富的工具和模塊,幫助開(kāi)發(fā)者構(gòu)建、訓(xùn)練和部署神經(jīng)網(wǎng)絡(luò)模型。在神經(jīng)網(wǎng)絡(luò)模型中,輸出層是尤為關(guān)鍵的部分,它負(fù)責(zé)
    的頭像 發(fā)表于 07-10 14:57 ?508次閱讀

    rnn是遞歸神經(jīng)網(wǎng)絡(luò)還是循環(huán)神經(jīng)網(wǎng)絡(luò)

    RNN(Recurrent Neural Network)是循環(huán)神經(jīng)網(wǎng)絡(luò),而非遞歸神經(jīng)網(wǎng)絡(luò)。循環(huán)神經(jīng)網(wǎng)絡(luò)是一種具有時(shí)間序列特性的神經(jīng)網(wǎng)絡(luò),能夠處理序列數(shù)據(jù),具有記憶功能。以下是關(guān)于循環(huán)
    的頭像 發(fā)表于 07-05 09:52 ?585次閱讀

    遞歸神經(jīng)網(wǎng)絡(luò)與循環(huán)神經(jīng)網(wǎng)絡(luò)一樣嗎

    時(shí)具有各自的優(yōu)勢(shì)和特點(diǎn)。本文介紹遞歸神經(jīng)網(wǎng)絡(luò)和循環(huán)神經(jīng)網(wǎng)絡(luò)的概念、結(jié)構(gòu)、工作原理、優(yōu)缺點(diǎn)以及應(yīng)用場(chǎng)景。 遞歸神經(jīng)網(wǎng)絡(luò)(Recursive Neural Network,RvNN) 1
    的頭像 發(fā)表于 07-05 09:28 ?887次閱讀

    遞歸神經(jīng)網(wǎng)絡(luò)是循環(huán)神經(jīng)網(wǎng)絡(luò)

    。 遞歸神經(jīng)網(wǎng)絡(luò)的概念 遞歸神經(jīng)網(wǎng)絡(luò)是一種具有短期記憶功能的神經(jīng)網(wǎng)絡(luò),它能夠處理序列數(shù)據(jù),如時(shí)間序列、文本、語(yǔ)音等。與傳統(tǒng)的前饋神經(jīng)網(wǎng)絡(luò)不同,遞歸
    的頭像 發(fā)表于 07-04 14:54 ?780次閱讀

    循環(huán)神經(jīng)網(wǎng)絡(luò)算法原理及特點(diǎn)

    )相比,RNN在處理序列數(shù)據(jù)時(shí)具有明顯的優(yōu)勢(shì)。本文介紹循環(huán)神經(jīng)網(wǎng)絡(luò)的原理、特點(diǎn)及應(yīng)用。 1. 循環(huán)神經(jīng)網(wǎng)絡(luò)的原理 1.1 基本概念 循環(huán)神經(jīng)網(wǎng)絡(luò)是一種具有循環(huán)連接的
    的頭像 發(fā)表于 07-04 14:49 ?694次閱讀

    循環(huán)神經(jīng)網(wǎng)絡(luò)和卷積神經(jīng)網(wǎng)絡(luò)的區(qū)別

    結(jié)構(gòu)。它們?cè)谔幚聿煌?lèi)型的數(shù)據(jù)和解決不同問(wèn)題時(shí)具有各自的優(yōu)勢(shì)和特點(diǎn)。本文將從多個(gè)方面比較循環(huán)神經(jīng)網(wǎng)絡(luò)和卷積神經(jīng)網(wǎng)絡(luò)的區(qū)別。 基本概念 循環(huán)神經(jīng)網(wǎng)絡(luò)是一種具有循環(huán)連接的神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu),它可
    的頭像 發(fā)表于 07-04 14:24 ?1309次閱讀

    循環(huán)神經(jīng)網(wǎng)絡(luò)和遞歸神經(jīng)網(wǎng)絡(luò)的區(qū)別

    處理序列數(shù)據(jù)方面具有顯著的優(yōu)勢(shì),但它們?cè)诮Y(jié)構(gòu)和工作原理上存在一些關(guān)鍵的區(qū)別。 循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN) 1.1 RNN的結(jié)構(gòu) 循環(huán)神經(jīng)網(wǎng)絡(luò)是一種具有循環(huán)連接的神經(jīng)網(wǎng)絡(luò),其核心思想是前一
    的頭像 發(fā)表于 07-04 14:19 ?930次閱讀

    如何使用MATLAB神經(jīng)網(wǎng)絡(luò)工具

    和訓(xùn)練神經(jīng)網(wǎng)絡(luò)。本文介紹如何使用MATLAB神經(jīng)網(wǎng)絡(luò)工具箱,以及如何解讀神經(jīng)網(wǎng)絡(luò)的結(jié)果圖。 MATLAB神經(jīng)網(wǎng)絡(luò)工具箱簡(jiǎn)介 MATLAB
    的頭像 發(fā)表于 07-03 10:34 ?2512次閱讀

    matlab神經(jīng)網(wǎng)絡(luò)工具箱結(jié)果分析

    神經(jīng)網(wǎng)絡(luò)是一種強(qiáng)大的機(jī)器學(xué)習(xí)技術(shù),廣泛應(yīng)用于各種領(lǐng)域,如圖像識(shí)別、語(yǔ)音識(shí)別、自然語(yǔ)言處理等。MATLAB提供了一個(gè)功能強(qiáng)大的神經(jīng)網(wǎng)絡(luò)工具箱,可以幫助用戶快速構(gòu)建和訓(xùn)練神經(jīng)網(wǎng)絡(luò)模型。本文
    的頭像 發(fā)表于 07-03 10:32 ?609次閱讀

    bp神經(jīng)網(wǎng)絡(luò)和卷積神經(jīng)網(wǎng)絡(luò)區(qū)別是什么

    BP神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural Network)和卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,簡(jiǎn)稱CNN)是兩種不同類(lèi)型的人工神經(jīng)網(wǎng)絡(luò),它們?cè)?/div>
    的頭像 發(fā)表于 07-03 10:12 ?1199次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)和bp神經(jīng)網(wǎng)絡(luò)的區(qū)別

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,簡(jiǎn)稱CNN)和BP神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural Networks,簡(jiǎn)稱BPNN)是兩種
    的頭像 發(fā)表于 07-02 14:24 ?4100次閱讀

    神經(jīng)網(wǎng)絡(luò)在數(shù)學(xué)建模中的應(yīng)用

    數(shù)學(xué)建模是一種利用數(shù)學(xué)方法和工具來(lái)描述和分析現(xiàn)實(shí)世界問(wèn)題的過(guò)程。神經(jīng)網(wǎng)絡(luò)是一種模擬人腦神經(jīng)元結(jié)構(gòu)和功能的計(jì)算模型,可以用于解決各種復(fù)雜問(wèn)題。在數(shù)學(xué)建模中,神經(jīng)網(wǎng)絡(luò)可以作為一種有效的
    的頭像 發(fā)表于 07-02 11:29 ?950次閱讀
    主站蜘蛛池模板: 免费又黄又硬又爽大片| 精品久久久无码21P发布| 国产午夜理论片YY8840Y| 青柠在线观看视频在线| 在线免费观看国产| 果冻传媒在线完整免费播放| 手机在线免费观看毛片| 把腿张开再深点好爽宝贝| 麻豆精品人妻一区二区三区蜜桃 | 国产亚洲AV精品无码麻豆| 污文啊好棒棒啊好了| 国产69精品久久久久APP下载| 日韩精品一区二区三区色欲AV| 草久久久久| 日韩中文欧美在线视频| 国产AV精品国语对白国产| 水蜜桃亚洲一二三四在线| 国产精品99AV在线观看| 性春院| 好硬好湿好大再深一点动态图| 亚洲欧美一区二区三区蜜芽 | 亚洲欧洲精品A片久久99| 九九精彩视频在线观看视频| 在线少女漫画| 理论片午午伦夜理片影院| 99久久精品互换人妻AV| 日本午夜精品一区二区三区电影 | 免费人成视频X8X8国产更快乐| jealousvue成熟40岁| 乳色吐息在线观看全集免费观看| 国产精品无码无卡毛片不卡视| 亚洲欧美综合乱码精品成人网 | 综合激情区视频一区视频二区| 免费精品美女久久久久久久久久| 99热久久精品国产一区二区| 日韩欧美一区二区三区免费观看| 国产精品日本一区二区在线播放| 羞羞漫画视频| 美女脱精光让男生桶下面| 成人国产在线观看| 亚洲AV成人无码网天堂|