色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

整個神經(jīng)網(wǎng)絡(luò)的架構(gòu),只要能理解這個

倩倩 ? 來源:CSDN學(xué)院 ? 2020-04-17 14:51 ? 次閱讀

今天我們來討論當(dāng)下最熱門的神經(jīng)網(wǎng)絡(luò),現(xiàn)在深度學(xué)習(xí)炒的非常火,其實本質(zhì)還是把神經(jīng)網(wǎng)絡(luò)算法進(jìn)行了延伸和優(yōu)化!咱們這回的目標(biāo)就直入主題用最簡單的語言讓大家清楚神經(jīng)網(wǎng)絡(luò)究竟是個什么東西。關(guān)于神經(jīng)網(wǎng)絡(luò)與人工智能的發(fā)展,以及神經(jīng)網(wǎng)絡(luò)各種生物學(xué)模型咱們就不嘮了,我是覺得把神經(jīng)網(wǎng)絡(luò)比作各種類人腦模型和生物學(xué)模型沒有半點助于咱們理解,反而把簡單的問題復(fù)雜了,這些恩怨情仇咱們就不過多介紹了!

這張圖就是我們的核心了,也是整個神經(jīng)網(wǎng)絡(luò)的架構(gòu),只要能理解這個,那就OK了!首先我們來觀察整個結(jié)構(gòu),發(fā)現(xiàn)在神經(jīng)網(wǎng)絡(luò)中是存在多個層的,有輸入層,隱層1,隱層2,輸出層。那么我們想要得到一個合適的結(jié)果,就必須通過這么多層得到最終的結(jié)果,在這里咱們先來考慮一個問題,神經(jīng)網(wǎng)絡(luò)究竟做了一件什么事?

如果你想做一個貓狗識別,大家首先想到了神經(jīng)網(wǎng)絡(luò),那它是怎么做的呢?先來想想咱們?nèi)祟愂窃趺捶直娴模遣皇歉鶕?jù)貓和狗的特征是不一樣的,所以我們可以很輕松就知道什么事貓什么是狗。既然這樣,神經(jīng)網(wǎng)絡(luò)要做的事跟咱們一樣,它也需要知道貓的特征是什么,狗的特征是什么,這么多的層次結(jié)構(gòu)其實就做了一件事,進(jìn)行特征提取,我們希望網(wǎng)絡(luò)結(jié)構(gòu)能更好的識別出來我們想要的結(jié)果,那勢必需要它們能提取處最合適的特征,所以神經(jīng)網(wǎng)絡(luò)的強(qiáng)大之處就在于它可以幫助我們更好的選擇出最恰當(dāng)?shù)奶卣鳌?/p>

在第一張圖中我們定義了多層的結(jié)構(gòu),在這里有一個概念叫做神經(jīng)元,那么神經(jīng)元真的存在嗎?像大腦一樣?其實就是一個權(quán)重參數(shù)矩陣,比如你有一個輸入數(shù)據(jù)。它是由3個特征組成的,我們就說輸入是一個batchsize*3的矩陣,(batchsieze是一次輸入的數(shù)據(jù)量大小),那既然要對輸入提取特征,我們就需要權(quán)重參數(shù)矩陣W了,在圖中神經(jīng)元的意思就是我們要把這個3個特征如何變幻才能得到更好的信息表達(dá),比如中間的第一個隱層有4個神經(jīng)元,那么我們需要的第一個權(quán)重參數(shù)矩陣W1就是3 * 4,表示通過矩陣鏈接后得到的是batchsize * 4的特征,也就是說我們將特征進(jìn)行的變換,看起來好像是從3變到了4只增加了一個,但是我們的核心一方面是特征的個數(shù),這個我們可以自己定義神經(jīng)元的個數(shù)。另一方面我們關(guān)注的點在于,什么樣的權(quán)重參數(shù)矩陣W1才能給我得到更好的特征,那么神經(jīng)網(wǎng)絡(luò)大家都說它是一個黑盒子,原因就在于權(quán)重參數(shù)矩陣W1內(nèi)部是很難解釋的,其實我們也不需要認(rèn)識它,只要計算機(jī)能懂就OK了。那么這一步是怎么做的呢?計算機(jī)怎么得到最好的權(quán)重參數(shù)W1幫我們完成了特征的提取呢?這一點就要靠反向傳播與梯度下降了,簡單來說就是我們告訴神經(jīng)網(wǎng)絡(luò)我的目標(biāo)就是分辨出什么是貓什么是狗,然后神經(jīng)網(wǎng)絡(luò)就會通過大量的迭代去尋找最合適的一組權(quán)重參數(shù)矩陣。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
收藏 人收藏

    評論

    相關(guān)推薦

    人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法

    在上一篇文章中,我們介紹了傳統(tǒng)機(jī)器學(xué)習(xí)的基礎(chǔ)知識和多種算法。在本文中,我們會介紹人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法,供各位老師選擇。 01 人工神經(jīng)網(wǎng)絡(luò) ? 人工
    的頭像 發(fā)表于 01-09 10:24 ?131次閱讀
    人工<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的原理和多種<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b><b class='flag-5'>架構(gòu)</b>方法

    怎么對神經(jīng)網(wǎng)絡(luò)重新訓(xùn)練

    發(fā)生變化,導(dǎo)致神經(jīng)網(wǎng)絡(luò)的泛化能力下降。為了保持神經(jīng)網(wǎng)絡(luò)的性能,需要對其進(jìn)行重新訓(xùn)練。本文將詳細(xì)介紹重新訓(xùn)練神經(jīng)網(wǎng)絡(luò)的步驟和方法。 數(shù)據(jù)預(yù)處理 數(shù)據(jù)預(yù)處理是重新訓(xùn)練神經(jīng)網(wǎng)絡(luò)的第一步。在
    的頭像 發(fā)表于 07-11 10:25 ?477次閱讀

    BP神經(jīng)網(wǎng)絡(luò)和卷積神經(jīng)網(wǎng)絡(luò)的關(guān)系

    BP神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural Network)和卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,簡稱CNN)是兩種在人工智能和機(jī)器學(xué)習(xí)領(lǐng)域
    的頭像 發(fā)表于 07-10 15:24 ?1627次閱讀

    BP神經(jīng)網(wǎng)絡(luò)和人工神經(jīng)網(wǎng)絡(luò)的區(qū)別

    BP神經(jīng)網(wǎng)絡(luò)和人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Networks,簡稱ANNs)之間的關(guān)系與區(qū)別,是神經(jīng)網(wǎng)絡(luò)領(lǐng)域中一個基礎(chǔ)且重要的話題。本文將從定義、結(jié)構(gòu)、算法、應(yīng)用及未來發(fā)展等多個方面,詳細(xì)闡述BP
    的頭像 發(fā)表于 07-10 15:20 ?1181次閱讀

    全連接前饋神經(jīng)網(wǎng)絡(luò)與前饋神經(jīng)網(wǎng)絡(luò)的比較

    Neural Network, FCNN)和前饋神經(jīng)網(wǎng)絡(luò)(Feedforward Neural Network, FNN)因其結(jié)構(gòu)簡單、易于理解和實現(xiàn),成為了研究者們關(guān)注的熱點。本文將從概念、模型結(jié)構(gòu)、優(yōu)缺點以及應(yīng)用場景等方面,對全連接前饋
    的頭像 發(fā)表于 07-09 10:31 ?9167次閱讀

    rnn是遞歸神經(jīng)網(wǎng)絡(luò)還是循環(huán)神經(jīng)網(wǎng)絡(luò)

    RNN(Recurrent Neural Network)是循環(huán)神經(jīng)網(wǎng)絡(luò),而非遞歸神經(jīng)網(wǎng)絡(luò)。循環(huán)神經(jīng)網(wǎng)絡(luò)是一種具有時間序列特性的神經(jīng)網(wǎng)絡(luò),能夠處理序列數(shù)據(jù),具有記憶功能。以下是關(guān)于循環(huán)
    的頭像 發(fā)表于 07-05 09:52 ?598次閱讀

    遞歸神經(jīng)網(wǎng)絡(luò)是循環(huán)神經(jīng)網(wǎng)絡(luò)

    遞歸神經(jīng)網(wǎng)絡(luò)(Recurrent Neural Network,簡稱RNN)和循環(huán)神經(jīng)網(wǎng)絡(luò)(Recurrent Neural Network,簡稱RNN)實際上是同一個概念,只是不同的翻譯方式
    的頭像 發(fā)表于 07-04 14:54 ?811次閱讀

    循環(huán)神經(jīng)網(wǎng)絡(luò)和卷積神經(jīng)網(wǎng)絡(luò)的區(qū)別

    循環(huán)神經(jīng)網(wǎng)絡(luò)(Recurrent Neural Network,RNN)和卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是深度學(xué)習(xí)領(lǐng)域中兩種非常重要的神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 07-04 14:24 ?1354次閱讀

    深度神經(jīng)網(wǎng)絡(luò)與基本神經(jīng)網(wǎng)絡(luò)的區(qū)別

    在探討深度神經(jīng)網(wǎng)絡(luò)(Deep Neural Networks, DNNs)與基本神經(jīng)網(wǎng)絡(luò)(通常指傳統(tǒng)神經(jīng)網(wǎng)絡(luò)或前向神經(jīng)網(wǎng)絡(luò))的區(qū)別時,我們需要從多個維度進(jìn)行深入分析。這些維度包括
    的頭像 發(fā)表于 07-04 13:20 ?978次閱讀

    反向傳播神經(jīng)網(wǎng)絡(luò)和bp神經(jīng)網(wǎng)絡(luò)的區(qū)別

    反向傳播神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural Network,簡稱BP神經(jīng)網(wǎng)絡(luò))是一種多層前饋神經(jīng)網(wǎng)絡(luò),它通過反向傳播算法來調(diào)整網(wǎng)絡(luò)中的權(quán)重和偏置,以達(dá)到最小化誤差的
    的頭像 發(fā)表于 07-03 11:00 ?831次閱讀

    bp神經(jīng)網(wǎng)絡(luò)和卷積神經(jīng)網(wǎng)絡(luò)區(qū)別是什么

    BP神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural Network)和卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,簡稱CNN)是兩種不同類型的人工神經(jīng)網(wǎng)絡(luò),它們在
    的頭像 發(fā)表于 07-03 10:12 ?1253次閱讀

    BP神經(jīng)網(wǎng)絡(luò)激活函數(shù)怎么選擇

    中,激活函數(shù)起著至關(guān)重要的作用,它決定了神經(jīng)元的輸出方式,進(jìn)而影響整個網(wǎng)絡(luò)的性能。 一、激活函數(shù)的作用 激活函數(shù)是BP神經(jīng)網(wǎng)絡(luò)神經(jīng)元的核心
    的頭像 發(fā)表于 07-03 10:02 ?738次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)和bp神經(jīng)網(wǎng)絡(luò)的區(qū)別

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,簡稱CNN)和BP神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural Networks,簡稱BPNN)是兩種
    的頭像 發(fā)表于 07-02 14:24 ?4392次閱讀

    神經(jīng)網(wǎng)絡(luò)在數(shù)學(xué)建模中的應(yīng)用

    理解和解決實際問題。本文將詳細(xì)介紹神經(jīng)網(wǎng)絡(luò)在數(shù)學(xué)建模中的應(yīng)用,包括神經(jīng)網(wǎng)絡(luò)的基本原理、數(shù)學(xué)建模中神經(jīng)網(wǎng)絡(luò)的應(yīng)用場景、神經(jīng)網(wǎng)絡(luò)的優(yōu)缺點以及如
    的頭像 發(fā)表于 07-02 11:29 ?988次閱讀

    神經(jīng)網(wǎng)絡(luò)架構(gòu)有哪些

    神經(jīng)網(wǎng)絡(luò)架構(gòu)是機(jī)器學(xué)習(xí)領(lǐng)域中的核心組成部分,它們模仿了生物神經(jīng)網(wǎng)絡(luò)的運作方式,通過復(fù)雜的網(wǎng)絡(luò)結(jié)構(gòu)實現(xiàn)信息的處理、存儲和傳遞。隨著深度學(xué)習(xí)技術(shù)的不斷發(fā)展,各種
    的頭像 發(fā)表于 07-01 14:16 ?746次閱讀
    主站蜘蛛池模板: 天天影视香色欲综合网| 俄罗斯美女破处| 欧美久久综合网| 国产精品成人网| 最新精品国产| 亚洲刺激视频| 日韩中文字幕欧美在线视频| 久久只精品99品免费久| 国产精品一区二区三区免费| free俄罗斯性xxxxhd派对| 夜色视频社区| 亚洲 欧美 国产 综合不卡| 欧美日韩国产高清综合二区| 久久免费看少妇高潮A片JA | 国产乱妇乱子在线播视频播放网站| 97视频免费上传播放| 亚洲一在线| 亚洲黄视频在线观看| 天天操狠狠操夜夜操| 日本湿姝在线观看| 欧美性视频xxxxhd| 男人就爱吃这套下载| 久久综合老色鬼网站| 换脸国产AV一区二区三区| 国产午夜精品久久理论片小说| 国产99久久久欧美黑人刘玥| 成年人视频免费在线播放| 99热久久久无码国产精品性麻豆| 中文字幕人成乱码中国| 在线播放一区| 在公交车上被JB草坏了被轮J了| 亚洲欧美中文字幕5发布| 亚洲AV天堂无码麻豆电影| 午夜看片网| 小妇人电影免费完整观看2021| 天堂色| 少女亚洲free| 无码AV精品久久一区二区免费| 牲高潮99爽久久久久777| 色色噜一噜| 午夜影院视费x看|