色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

底層傳感器信號鏈怎樣保障自動駕駛安全

工程師鄧生 ? 來源:電子元件技術網 ? 作者:電子元件技術網 ? 2020-01-18 16:58 ? 次閱讀

就像最初的登月一樣,在通往安全自動駕駛車輛的道路上還存在許多障礙。最近發生的涉及自動駕駛車輛的事故助長了唱反調者的聲勢,他們認為車輛及其行駛環境太復雜,變數太多,而算法和軟件仍然錯誤太多。對于參與了ISO26262功能安全合規性驗證的任何人來說,他們對此持懷疑態度是可以理解的。這種懷疑態度有相關數據的支持,下圖比較了2017年在硅谷測試的五家自動駕駛車輛公司的實際行駛里程數和脫離自動駕駛模式的次數(圖1)。2019年的數據尚未匯總,但個別公司的報告可在網上查閱。

圖1. 五大自動駕駛制造商在加州的測試數據:每次脫離人為接管后自動駕駛系統的平均行駛英里數(2017年12月至2018年10月)。在這段時間內,總共有28家公司主動在在加州的公眾場合對車輛進行了測試。期間,在自動駕駛模式下共行駛2,036,296英里,發生143,720次人為接管。

但是目標已經很明確,當務之急是要在自動駕駛即將到來之時,保障至關重要的安全性。加州車輛管理局(DMV)2018年的非官方數據顯示,同等英里數下,自動駕駛模式的人為接管次數正在減少,這也表明自動駕駛系統正變得越來越強大。而這種趨勢需要進一步加快。

通過將協作和新思維放在第一位,汽車制造商將直接與芯片供應商洽談;傳感器制造商將與AI算法開發人員討論傳感器融合;而軟件開發人員將與硬件提供商建立聯系,充分發揮兩者的優勢。舊的關系正在改變,新的關系正在動態地形成,以優化最終設計的性能、功能、可靠性、成本和安全性。

生態系統正在尋求合適的模式,以便在此基礎上制造和測試全自動駕駛車輛,用于快速涌現的新應用,如自動駕駛出租車(robo-taxi)和長途貨車。在此過程中,高級駕駛輔助系統(ADAS)所使用的傳感器不斷改進,使得自動化程度快速提高。

圖2. 用于ADAS感知和車輛導航的各種傳感技術往往獨立工作,并向駕駛員發出預警,以便做出反應。

這些傳感器技術包括攝像頭、激光探測與測距(LiDAR)、無線電探測與測距(radar)、微機電傳感器(MEMS)、慣性測量單元(IMU)、超聲波和GPS,所有這些都為人工智能系統提供關鍵的數據輸入,從而驅動真正的自動駕駛車輛。

車輛的認知能力是預測性安全的基石

車輛的智能化程度通常用自動駕駛級別來表示。L1和L2主要是預警系統,而L3或更高級別的車輛被授權控制以避免事故。隨著車輛發展到L5,方向盤將被取消,車輛完全自動駕駛。

在最初的幾代系統中,隨著車輛開始具備L2功能,各個傳感器系統獨立工作。這些預警系統誤報率較高,帶來了不少麻煩,因此經常被關閉。

為了實現具有認知能力的全自動駕駛車輛,傳感器的數量將顯著增加。此外,性能和響應速度也必須大幅提升(圖3、圖4)。

圖3. 為了確保自動駕駛車輛的安全,必須充分探測當前和歷史狀態、環境特性以及車輛自身狀態(位置、速度、軌跡和機械狀況)

圖4. 自動駕駛等級和傳感器要求

將更多傳感器安裝在車輛上后,還可以更好地監控和分析當前機械狀況,如胎壓、重量變化(例如,負載和無負載、一名乘客或五名乘客),以及可能影響制動和操控的其他磨損因素。有了更多的外部傳感方式,車輛可以更充分地感知其行駛狀況和周圍環境。

傳感方式的改進使汽車能夠識別環境的當前狀態,并了解歷史狀態。這來自于ENSCO航空航天科學和工程部首席技術官Joseph Motola開發的原理。這種傳感能力既可以完成一些簡單的任務,例如探查道路狀況,識別坑洼位置,也可以進行一些詳細分析,比如一段時間內在特定區域發生的事故類型以及事故原因。

在產生這些認知概念時,由于感測、處理、內存容量和網絡連接的限制,使它們看起來似乎遙不可及。但現在情況已經大有改觀。現在,系統可以訪問這些歷史數據,并將其與車輛傳感器提供的實時數據相結合,以提供越來越準確的預防性措施,避免發生事故。

例如,IMU可以檢測到因坑洼或障礙物引起的突然躍起或偏離。過去,這些信息無處傳輸,但現在通過實時連接,可將這些數據發送到中央數據庫,并用于警告其他車輛有關坑洼或障礙物的信息。攝像頭、雷達、激光雷達和其他傳感器數據也是如此。

這些數據經過編譯、分析和融合,使車輛能夠利用這些數據對其行駛環境作出預判。這使車輛能夠成為一臺有學習能力的機器,有望做出比人類更好、更安全的決策。

多方面決策和分析

在提高車輛感知方面,現已取得了很大的進展。重點在于從各個傳感器收集數據,并應用傳感器融合策略,將互補優勢發揮到極致,彌補不同傳感器在各種條件下各自的弱點(圖5)。

圖5. 每一種傳感技術都有其各自的優缺點,但只要有適當的傳感器融合策略,它們就可以優勢互補并彌補弱點

不過,要想真正有效地解決行業面臨的問題,仍有許多工作要做。例如,要提高攝像頭計算橫向速度的能力(也就是物體在與車輛行駛方向垂直的路徑上移動的速度)。但是,要實現足夠低的誤報率,即使是最好的機器學習算法仍然需要大約300毫秒來進行橫向移動檢測。對于在以每小時60英里速度行駛的車 輛和在車輛前方行走的行人來說,毫秒之差就關系到人員受傷的輕重程度,因此響應時間至關重要

300毫秒延遲是由系統從連續視頻幀執行增量矢量計算所需的時間造成的。要進行可靠的檢測,需要十個或以上連續幀,但我們必須將其降到一個或兩個連續幀,以便給車輛足夠的響應時間。雷達可以做到這一點。

同樣,雷達在速度和物體探測方面也有許多優點,例如對方位和俯仰角的高分辨率,以及“看到”周圍物體的能力,但它也需要為車輛提供更多的時間來作出反應。以400公里/小時或更高的速度測定為目標,77GHz至79GHz的一些開發工作取得了新的進展。這種水平速度測定可能看起來很極端,但對于支持復 雜的雙向車道行駛是必要的,在這種路況中,相向行駛的車輛的相對速度超過200公里/小時。

激光雷達可以彌補攝像頭和一般雷達的不足,是具有認知能力的全自動駕駛車輛上一個必不可少的組件(圖6)。但它也面臨著挑戰。

圖6. 全自動駕駛車輛主要依賴360檢測,需要使用先進的雷達、激光雷達、攝像頭、慣性測量單元和超聲波傳感器

激光雷達正在發展為經濟高效的緊湊型固態設計,可以放置在車輛周邊的多個位置,以支持完整的360覆蓋范圍。它與一般雷達和攝像頭系統相輔相成,提升了角分辨率和深度感知,以提供更精確的三維環境影像。

但是,近紅外波段(IR)(850nm至940nm)對視網膜有害,因此其能量輸出在905nm處被嚴格調節到200nJ/脈沖。而通過遷移到波長超過1500nm的短波紅外,這些光由眼睛的整個表面吸收。這樣就可以放寬一些限制,調節到每脈沖8 mJ。1500nm脈沖激光雷達系統的能量級別是905nm激光雷達的40,000倍,探測距離是后者的4倍。此外,1500nm系統可以更好地抵御某些環境條件,如霧霾、灰塵和細小的氣溶膠。

1500nm激光雷達面臨的挑戰是系統成本,這在很大程度上受到光伏探測器技術的推動(該技術如今基于InGaAs技術)。獲得高質量解決方案,即具有高靈敏度、低暗電流和低電容,將是1500nm激光雷達取得進展的關鍵技術。此外,隨著激光雷達系統進入第二代和第三代,需要使用針對應用而優化的電路集成,以減少尺寸、功率和整體系統成本。

除了超聲波、攝像頭、雷達和激光雷達之外,其他傳感技術也在實現全自動駕駛方面發揮著關鍵作用。GPS讓車輛能夠始終了解自己所處的位置。盡管如此,仍有一些地方無法獲得GPS信號,例如隧道和高層建筑中。而這就是慣性測量單元發揮重要作用的地方。

盡管經常被忽視,但IMU非常穩定可靠,因為它依賴于重力,而重力幾乎不受環境條件影響。它對航位推算非常有用。在暫時沒有GPS信號的情況下,航位推算可使用來自速度計和IMU等來源的數據,檢測行駛的距離和方向,并將這些數據疊加到高清地圖上。這使自動駕駛車輛能夠保持在正確的軌跡,直到GPS信號恢復。

高質量數據可節約時間,挽救生命

和這些傳感技術一樣重要的是它們的可靠性,如果傳感器本身不可靠,輸出的信號沒有被準確捕獲以作為高精度數據提供給上游,那么這些關鍵的傳感器將變得毫無意義,也正應驗了那句話,如果輸入的是垃圾,那么輸出的也一定是垃圾。

為了確保傳感器的可靠性,即使是最先進的模擬信號鏈也必須不斷改進,以檢測、獲取和數字化轉換傳感器信號,使其準確度和精度不會隨時間和溫度的變化而發生偏差。采用合適的器件和設計方法,可以大幅緩解一些出了名的難題(如偏置溫漂、相位噪聲、干擾和其他不穩定現象)。高精度/高質量的數據是機器學習和人工智能處理器得到適當訓練并做出正確決策的基礎。一般不會有第二次機會讓你重頭來過。

一旦數據質量得到保證,各種傳感器融合方法和人工智能算法就可以做出最佳響應。事實上,不管人工智能算法訓練得有多好,一旦模型被編譯并部署到網絡邊緣的設備上,它們的有效性就完全依賴于高精度的傳感器可靠數據。

傳感器模式、傳感器融合、信號處理和人工智能之間的這種相互作用,對具有智能和認知能力的自動駕駛車輛的發展,以及保障駕駛員、乘客和行人安全都有著深遠的影響。但是,如果沒有高度可靠、準確、高精度的傳感器信息(這些信息是安全自動駕駛車輛的基礎),一切都毫無意義。

和任何先進技術一樣,我們在這方面做的工作越多,就會發現更多需要解決的復雜用例。這種復雜性將繼續對現有技術構成難題,因此我們期待下一代傳感器和傳感器融合算法可以解決這些問題。

就像最初的登月一樣,我們對于整個自動駕駛車輛推行計劃也抱有巨大的期待,希望這將為社會帶來深刻的變革和持久的影響。從輔助駕駛發展到自動駕駛,不僅會大幅提升交通安全性,還會顯著提高生產力。而這樣的未來完全依托于傳感器,其他一切都將建立在傳感器基礎之上。

過去25年來,ADI一直致力于汽車安全和ADAS發展。現在,ADI正在為自動駕駛的未來奠定基礎。ADI圍繞慣性導航、高性能雷達和激光雷達等領域的卓越積累,提供高性能傳感器和信號/功率鏈解決方案。這些解決方案不僅將大幅提高這些系統的性能,而且還將降低整個平臺的實施成本,從而加快我們邁向自動駕駛的步伐。
責任編輯:wv

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 傳感器
    +關注

    關注

    2552

    文章

    51217

    瀏覽量

    754609
  • 自動駕駛
    +關注

    關注

    784

    文章

    13856

    瀏覽量

    166590
收藏 人收藏

    評論

    相關推薦

    物聯網中的傳感器類型解析 傳感器類型在自動駕駛中的應用

    物聯網中的傳感器類型解析及其在自動駕駛中的應用 傳感器是一種檢測裝置,能感受到被測量的信息,并能將感受到的信息按一定規律變換成為電信號或其他所需形式的信息輸出,以滿足信息的傳輸、處理、
    的頭像 發表于 12-06 14:15 ?399次閱讀

    傳感器融合在自動駕駛中的應用趨勢探究

    自動駕駛技術的快速發展加速交通行業變革,為實現車輛自動駕駛,需要車輛對復雜動態環境做出準確、高效的響應,而多傳感器融合技術為提升自動駕駛系統的穩定性和
    的頭像 發表于 12-05 09:06 ?397次閱讀
    多<b class='flag-5'>傳感器</b>融合在<b class='flag-5'>自動駕駛</b>中的應用趨勢探究

    MEMS技術在自動駕駛汽車中的應用

    中的核心作用 MEMS傳感器以其微小但功能強大的特性,在自動駕駛汽車中發揮著至關重要的作用。它們能夠實時監測和控制車輛的各種參數,為自動駕駛系統提供精確的環境感知和數據支持。這些傳感器
    的頭像 發表于 11-20 10:19 ?427次閱讀

    自動駕駛汽車安全嗎?

    隨著未來汽車變得更加互聯,汽車逐漸變得更加依賴技術,并且逐漸變得更加自動化——最終實現自動駕駛,了解自動駕駛汽車的安全問題變得非常重要,這樣你才能回答“
    的頭像 發表于 10-29 13:42 ?544次閱讀
    <b class='flag-5'>自動駕駛</b>汽車<b class='flag-5'>安全</b>嗎?

    FPGA在自動駕駛領域有哪些優勢?

    領域的主要優勢: 高性能與并行處理能力: FPGA內部包含大量的邏輯門和可配置的連接,能夠同時處理多個數據流和計算任務。這種并行處理能力使得FPGA在處理自動駕駛中復雜的圖像識別、傳感器數據處理等
    發表于 07-29 17:11

    FPGA在自動駕駛領域有哪些應用?

    低,適合用于實現高效的圖像算法,如車道線檢測、交通標志識別等。 雷達和LiDAR處理:自動駕駛汽車通常會使用雷達和LiDAR(激光雷達)等多種傳感器來獲取環境信息。FPGA能夠協助完成這些傳感器
    發表于 07-29 17:09

    自動駕駛識別技術有哪些

    自動駕駛的識別技術是自動駕駛系統中的重要組成部分,它使車輛能夠感知并理解周圍環境,從而做出智能決策。自動駕駛識別技術主要包括多種傳感器及其融合技術,以及基于這些
    的頭像 發表于 07-23 16:16 ?702次閱讀

    自動駕駛傳感器技術介紹

    自動駕駛傳感器技術是自動駕駛系統的核心組成部分,它使車輛能夠感知并理解周圍環境,從而做出智能決策。以下是對自動駕駛傳感器技術的詳細介紹,內
    的頭像 發表于 07-23 16:08 ?2317次閱讀

    自動駕駛汽車傳感器有哪些

    自動駕駛汽車傳感器是實現自動駕駛功能的關鍵組件,它們通過采集和處理車輛周圍環境的信息,為自動駕駛系統提供必要的感知和決策依據。以下是對自動駕駛
    的頭像 發表于 07-23 16:00 ?2348次閱讀

    XV7181BB 陀螺儀傳感器自動駕駛設備中的應用

    自動駕駛技術正在迅速發展,改變著交通運輸的未來。為了實現安全、穩定和高效的自動駕駛,車輛需要依賴先進的傳感器技術來獲取實時的姿態和運動數據。EPSON的XV7181BB陀螺儀
    的頭像 發表于 06-13 15:23 ?519次閱讀
    XV7181BB 陀螺儀<b class='flag-5'>傳感器</b>在<b class='flag-5'>自動駕駛</b>設備中的應用

    揭秘自動駕駛:未來汽車的感官革命,究竟需要哪些超級傳感器

    來源:LANCI瀾社汽車,謝謝 編輯:感知芯視界 Link 隨著自動駕駛技術的發展,我們已進入一個技術瓶頸期。在這一背景下,汽車制造商開始將注意力轉向自動駕駛的關鍵組成部分——傳感器。特別是今年
    的頭像 發表于 05-31 09:14 ?633次閱讀

    未來已來,多傳感器融合感知是自動駕駛破局的關鍵

    巨大的進展;自動駕駛開始摒棄手動編碼規則和機器學習模型的方法,轉向全面采用端到端的神經網絡AI系統,它能模仿學習人類司機的駕駛,遇到場景直接輸入傳感器數據,再直接輸出轉向、制動和加速信號
    發表于 04-11 10:26

    探索自動駕駛傳感器仿真模型的可信度

    環境感知作為實現自動駕駛的首要環節,主要是通過智能網聯汽車搭載的視覺相機、激光雷達、毫米波雷達等傳感器感知周圍的道路環境并快速準確的獲取周圍目標的類別、位置、尺寸和速度等信息,是自動駕駛系統決策、規劃與控制的基礎。
    發表于 03-22 12:34 ?1355次閱讀
    探索<b class='flag-5'>自動駕駛</b><b class='flag-5'>傳感器</b>仿真模型的可信度

    Aeva與戴姆勒卡車達成10億美元自動駕駛傳感器供應協議

    科技先驅Aeva宣布與德國汽車巨頭戴姆勒卡車公司締結了一項價值10億美元的協議。根據協議,Aeva將為戴姆勒的自動駕駛卡車提供核心傳感器。這一合作標志著自動駕駛技術在重型運輸領域的重大突破。
    的頭像 發表于 01-17 14:18 ?644次閱讀

    萬集激光基于車路協同的自動駕駛方案亮相

    如何同時兼顧安全與成本?是自動駕駛的一大難題。萬集獨創基于C-V2X的車路協同自動駕駛解決方案給出了自己的答案。通過將道路的實時交通信息應用進來,可以降低單車智能對于過多傳感器的依賴和
    的頭像 發表于 01-15 11:37 ?1061次閱讀
    主站蜘蛛池模板: 国产精品毛片在线视频| 免费看亚洲| 无码乱人伦一区二区亚洲一| 冠希和阿娇13分钟在线视频| 无码人妻丰满熟妇区五十路久久| 国产午夜精品一区二区三区 | 娇小亚裔被两个黑人| 中文乱码35页在线观看| 欧美另类一区| 国产毛片A级久久久不卡精品| 杨幂被视频在线观看| 牛牛超碰 国产| 国产乱色伦影片在线观看| 中文字幕日本在线mv视频精品| 日本一本在线播放| 久久99亚洲AV无码四区碰碰 | 成人性生交片无码免费看| 亚洲 欧美 国产 综合 播放 | 达达兔欧美午夜国产亚洲| 亚洲欧美国产综合在线| 男同志在线观看| 国产亚洲精品久久久久5区| 2019天天射干网站| 亚洲 欧美 另类 中文 在线| 啦啦啦影院视频在线看高清...| 古风H啪肉NP文| 3D内射动漫同人资源在线观看| 偷偷要色偷偷| 男女床上黄色| 精品国产乱码久久久久久人妻| 成人小视频在线观看| 诱咪视频免费| 亚洲成人免费在线观看| 妻子撸av中文字幕| 久久久精品免费免费直播| 国产精品久久久久AV麻豆| 9久爱午夜视频| 羽月希被黑人吃奶dasd585| 午夜片神马影院福利| 秋霞特色大片18岁入口| 两性午夜刺激爽爽视频|