色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

史上最大碳納米管芯片問世!

DPVg_AI_era ? 來源:lq ? 2019-09-07 07:08 ? 次閱讀

迄今為止用碳納米管制造的最大的芯片問世了!來自MIT的研究人員制造出一個完全由碳納米晶體管構成的16位微處理器,包含14000多個碳納米管(CNT)晶體管。這是新型芯片制造的一個重大里程碑。

史上最大碳納米管芯片問世!

今天,來自MIT的Gage Hills等人今天在Nature發表論文,報告了碳納米管芯片制造領域的一項重大進展:一個完全由碳納米晶體管構成的16位微處理器。這是迄今為止用碳納米管制造的最大的計算機芯片。

幾十年來,電子技術的進步一直由硅晶體管尺寸的不斷縮小而推動。然而,硅晶體管縮小變得越來越困難,現在的收益正在遞減。

以半導體碳納米管為基礎的晶體管作為先進微電子器件中硅晶體管的替代品,顯然很有前景。但碳納米管固有的納米級缺陷和可變性,以及處理它們面臨的挑戰,阻礙了它們在微電子領域的實際應用。

一個完整RV16XNANO裸片的顯微圖像。處理器核心位于裸片中間,測試電路環繞在外圍

作者表示,他們利用14000多個碳納米管晶體管制造出一個16位微處理器,證明可以完全由碳納米管場效應晶體管(CNFET)打造超越硅的微處理器,其設計和制造方法克服了之前與碳納米管相關的挑戰,有望為先進微電子裝置中的硅帶來一種高效能的替代品。

他們將這個處理器命名為RV16X-NANO,這款16位的微處理器基于RISC-V指令集,在16位數據和地址上運行標準的32位指令,包含14000多個互補金屬氧化物半導體 CNFET,并使用行業標準的工藝流程進行設計和制造。

一個完整的RV16X-NANO 150毫米晶圓,每個晶圓包含32個裸片

具體而言,Hills及同事提出一套碳納米管的制造方法,包括綜合處理和設計技術,以克服整個晶圓宏觀尺度上的納米級缺陷。

他們利用一種剝落工藝防止碳納米管聚合在一起,以防晶體管無法正常工作。此外,通過細致的電路設計(減少了金屬型碳納米管而非半導體型碳納米管的數量,后者的存在不會影響電路的功能),他們還克服了一些和碳納米管雜質相關的問題。

作者將其微處理器命名為“RV16X-NANO”,并在測試中成功執行了一個程序,生成消息:“你好,世界!我是RV16XNano,由碳納米管制成。”

“你好,世界!我是RV16XNano,由碳納米管制成”

里程碑突破!克服三大缺陷,提出完整碳納米管制造方法

碳納米管(Carbon Nanotube ,縮寫為 CNT)是一種直徑僅為 1 納米,或十億分之一米的管狀納米級石墨晶體。幾天前在Hot Chips會議上,臺積電研發負責人黃漢森(Phillip Wong)在談到未來要將晶體管將縮小到0.1nm尺度,便提出碳納米管作為一種使晶體管更快、更小的新技術,正在變得切實可用。

在過去10年中,CNT技術已經得到快速的發展,以往的研究已經實現單個CNFET、單個數字邏輯門,乃至小型的數字電路和系統。2013年,MIT的研究組實現了一個完整的數字系統演示:一個由178個CNFET組成的計算機原型,但它所能做的很有限,只實現了在單個數據位上操作的單條指令。

圖1:RV16X-NANO。a是制備的RV16X-NANO芯片,裸片面積6.912 mm×6.912 mm

這些小規模的演示與包含數萬個(例如微處理器)甚至數十億個(例如高性能計算服務器) FET的現代系統之間仍然存在很大的脫節。

具體到CNT,存在三個內在的挑戰:材料缺陷、制造缺陷和可變性。

材料缺陷:由于無法精確控制碳納米管的直徑,導致每次合成的碳納米管中都含有一定比例的金屬CNT,這會導致高泄漏電流和潛在的錯誤邏輯功能。

制造缺陷:在晶圓制造過程中,CNT天生地“捆綁”在一起,形成厚的CNT聚集體,這會導致CNFET失效(降低CNFET電路成品率),以及超大規模集成電路(VLSI)制造過程中令人望而卻步的高顆粒污染率。

可變性:以前實現CNT CMOS的技術要么依賴于極強反應性、非空氣穩定、非硅CMOS兼容的材料,要么缺乏可微調性、穩健性和重現性。這嚴重限制了CNT CMOS的復雜性。

在這項工作中,作者克服了固有的CNT缺陷和變化性,成功制造出超越硅的現代微處理器:RV16X-NANO,其設計和制造完全使用碳納米管晶體管。

他們提出一套碳納米管制造方法(manufacturing methodology for CNTs,MMC),將原始的處理和電路設計技術結合起來克服了固有的碳納米管的挑戰。

圖4:MMC。RV16X-NANO的設計和制造流程

MMC的關鍵要素是:

RINSE(removal of incubated nanotubes through selective exfoliation)。提出一種通過選擇性機械剝落工藝去除CNT聚集體缺陷的方法。在不影響非聚集CNTs或降低CNFET性能的情況下,RINSE方法可將CNT聚集體缺陷密度降低>250倍。

MIXED(metal interface engineering crossed with electrostatic doping)。所提出的 CNT 摻雜工藝結合了金屬接觸功函數工程和靜電摻雜,可實現穩健的晶圓級 CNFET CMOS 工藝

DREAM(designing resiliency against metallic CNTs)。該技術通過電路設計完全克服了金屬碳納米管的存在。DREAM將對金屬CNT純度的要求放寬了1萬倍左右(從半導體CNT純度要求99.999999%放寬到99.99%),不需要額外的加工步驟或冗余。DREAM是使用標準的電子設計自動化(EDA)工具實現的,成本最低,并使具有CNT純度的數字VLSI系統可以商用。

更重要的是,整個MMC是晶圓級的,與超大規模集成電路兼容,并且在設計和處理方面與現有的硅集成電路基礎設施無縫集成。

具體來說,RV16X-NANO是使用標準EDA工具設計的,并且只利用了與商用硅CMOS制造設施兼容的材料和工藝。

總之,這些貢獻構建起強大的CNT CMOS技術,并代表了超越硅的電子發展的一個重要里程碑。

RV16X-NANO的架構和設計

作者開發了一種可行的納米晶體管技術,提供兩種晶體管:p型金屬氧化物半導體(PMOS)和n型金屬氧化物半導體(NMOS)。在數字電子學中,計算被分成一系列基本(邏輯)操作,這些操作由稱為邏輯電路的部件執行。目前電子工業中這些電路的設計是基于互補金屬氧化物半導體(CMOS)技術的,需要PMOS和NMOS晶體管。

當一個負(或正)電壓被施加到一個稱為柵極的電極上時,PMOS(或NMOS)晶體管就被接通。該電極控制兩個電極(源極和漏極)之間通道的導電性(在本例中通道由碳納米管組成)。當一個PMOS晶體管和一個NMOS晶體管串聯時,結果是一個稱為逆變器(inverter)的元件(如下圖所示)。如果對這樣的逆變器施加低電壓,輸出電壓就會很高,反之亦然。這個元件是Hills及其同事設計的計算機中所有邏輯電路的基本組成部分。

一個碳納米管逆變器

作者通過在基板上形成隨機分布的高純度(99.99%)半導體納米管網絡來制作晶體管。它的形成過程類似于將一碗煮熟的意大利面倒在一個表面上,然后將所有不與表面直接接觸的面條去除。其結果是基板上覆蓋有一層大致是單層的隨機取向的納米管。

圖2:RV16X-NANO的架構和設計

然后,Hills等人在納米管上沉積金屬,將它們與源極和漏極連接起來。這種金屬的功函數(從表面去除電子所需的能量)取決于該器件是PMOS晶體管還是NMOS晶體管。作者用精心挑選和修剪過的氧化物材料覆蓋了每根納米管的其余部分,以便將納米管與其周圍環境隔離開來,并調整它們的性能。原則上,基板不需要由硅制成;它只需要是平的。此外,加工過程發生在相對較低的溫度(約200-325℃),因此可以很容易堆疊其他功能層。

你好,世界!我是RV16XNano,由碳納米管制成。

現代計算機設計是基于標準單元庫的。Hills和他的同事們設計了使用商用傳統設計工具來構建計算機架構所必需的所有標準單元。由于半導體納米管的純度為99.99%,其中約0.01%是金屬(非半導體),可能會危害電路。然而,某些標準單元的組合比其他更容易受到金屬納米管的影響。因此,作者強制執行修改后的設計規則,將這種脆弱的組合排除在外。

有了這些工具,他們就可以通過讓計算機執行“Hello, World”(一個在運行時輸出“Hello, World”消息的簡單程序)來設計、制造和測試他們的處理器了。

圖3:RV16X-NANO實驗結果。a、實驗測量波形來自RV16X-NANO,執行了著名的“Hello, World”程序。

Hills及其同事的碳納米管處理器基于CMOS技術,在16位數據上運行32位指令,晶體管通道長度約為1.5微米。因此,它可以與基于硅的英特爾80386處理器相比較,后者是1985年推出的,具有類似的規格。早期的80386可以以16兆赫的頻率處理指令,而碳納米管處理器的最大處理頻率約為1兆赫。造成這種差異的原因在于電子元件的電容(電荷存儲能力),以及最小晶體管所能輸出的電流量。

數字邏輯僅僅涉及晶體管柵極和互連進行充電和放電。充電和放電的速度取決于晶體管所能提供的電流的大小,這與晶體管的寬度和長度有關。一個設計良好的硅晶體管可以提供大約寬度每微米1毫安的電流(1 mA μm?1) 。相比之下, Hills 等人使用的典型納米管晶體管,只能提供大約6μA μm?1。這是該處理器的未來版本主要需要改進的地方。

增加電流的第一步是減小晶體管通道的長度。已經證明納米管晶體管的通道長度可以縮減到5納米。第二步是將每個通道的納米管密度從每微米10個納米管增加到每微米500個納米管。

對于這些隨機分布的納米管網絡,可實現的密度可能會存在上限,但沉積技術已經被證明能夠將這種網絡的電流提高到1.7 mA μm?1。

第三步是減小晶體管的寬度,從而減小源極和漏極的寬度,使這些電極能更快地充放電。縮小晶體管尺寸對于以納米管為基礎、以千兆赫頻率工作的CMOS技術來說是必不可少的

Hills及其同事的研究成果是基于對每個晶體管通道中幾個納米管性能進行平均。在未來的大規模納米管計算機中,PMOS和NMOS晶體管將只包含一個納米管。這些納米管必須是半導體的:如果逆變器中的兩個納米管中有一個是金屬的,那么沒有任何設計技巧可以解決這個問題。

這項工作毫無疑問是一個偉大的成就,涉及從材料科學到加工技術、從電路設計到電氣測試等許多研究課題。當然,在實現商用之前,還需要更多的努力。

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 芯片
    +關注

    關注

    456

    文章

    50959

    瀏覽量

    424795
  • 半導體
    +關注

    關注

    334

    文章

    27525

    瀏覽量

    219862
  • 微處理器
    +關注

    關注

    11

    文章

    2271

    瀏覽量

    82568

原文標題:Nature:史上最大碳納米管芯片問世!MIT用14000個碳納米管晶體管造出16位微處理器

文章出處:【微信號:AI_era,微信公眾號:新智元】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    安泰功率放大器應用:碳納米管薄膜YMUS超聲波噴涂

    光電探測器廣泛應用于遙感、夜視、偵察、醫學成像、環境保護和化學檢測等領域,光電探測材料的結構和性能直接影響光電探測器的性能。近期,碳納米管(CNTS)由于其獨特的光學和電學性能,已成為光電檢測中不可
    的頭像 發表于 12-19 11:41 ?150次閱讀
    安泰功率放大器應用:<b class='flag-5'>碳納米管</b>薄膜YMUS超聲波噴涂

    碳納米管在光電器件中的應用 碳納米管的功能化改性方法

    碳納米管在光電器件中的應用 碳納米管在光電器件中具有廣泛的應用,這主要得益于其優異的電學和光學性能。以下是一些具體的應用實例: 光電轉換器件 :碳納米管可以作為理想的光電轉換器件材料。研究者曾利用
    的頭像 發表于 12-12 09:12 ?280次閱讀

    碳納米管的結構與特性解析 碳納米管在能源儲存中的應用

    碳納米管的結構與特性解析 1. 結構概述 碳納米管(Carbon Nanotubes,簡稱CNTs)是一種由碳原子組成的納米級管狀結構材料,具有獨特的一維納米結構。它們可以看作是石墨烯
    的頭像 發表于 12-12 09:09 ?1093次閱讀

    碳納米管的導電性能介紹 碳納米管如何提高材料強度

    碳納米管的導電性能介紹 1. 碳納米管的結構特性 碳納米管的結構可以看作是石墨烯(單層碳原子構成的二維材料)卷曲而成的一維結構。根據卷曲的方式不同,碳納米管可以分為扶手椅型、鋸齒型和手
    的頭像 發表于 12-12 09:07 ?470次閱讀

    碳納米管與石墨烯的比較 碳納米管在復合材料中的應用

    碳納米管與石墨烯的比較 碳納米管和石墨烯都是碳的同素異形體,它們具有獨特的物理和化學性質,并在許多領域展現出廣泛的應用潛力。以下是兩者的主要區別: 碳納米管 石墨烯 結構 中空管狀結構,分為單壁和多
    的頭像 發表于 12-11 18:05 ?1025次閱讀

    碳納米管的主要應用領域 碳納米管在電子產品中的優勢

    碳納米管的主要應用領域 1. 能源領域 碳納米管因其優異的導電性和機械強度,在能源領域有著廣泛的應用。它們可以作為電池和超級電容器的電極材料,提高儲能效率和充放電速率。此外,碳納米管還可
    的頭像 發表于 12-11 17:55 ?1037次閱讀

    碳納米管介紹:性能突出的導電劑

    碳納米管介紹:性能突出的導電劑 一、碳納米管結構及特性碳納米管又稱巴基管,英文簡稱CNT,是由單層或多層的石墨烯層圍繞中心軸按一定的螺旋角卷曲而成一維量子材料。其最早在1991年由飯島澄男發現
    的頭像 發表于 12-03 17:11 ?700次閱讀
    <b class='flag-5'>碳納米管</b>介紹:性能突出的導電劑

    集成電路的互連線材料及其發展

    尤其是當電路的特征尺寸越來越小的時候,互連線引起的各種效應是影響電路性能的重要因素。本文闡述了傳統金屬鋁以及合金到現在主流的銅以及正在發展的新型材料———碳納米管作為互連線的優劣,并對新型光互連進行了介紹。
    的頭像 發表于 11-01 11:08 ?1150次閱讀

    新思科技發布1.6納米背面布線技術,助力萬億晶體管芯片發展

    近日,新思科技(Synopsys)宣布了一項重大的技術突破,成功推出了1.6納米背面電源布線項目。這一技術將成為未來萬億晶體管芯片制造過程中的關鍵所在。
    的頭像 發表于 09-30 16:11 ?386次閱讀

    金銀納米顆粒對單壁碳納米管實現近紅外熒光增強

    背景 單壁碳納米管(SWCNTs)可發出近紅外熒光,可作為理想的熒光標記物進行生物光學探測。但遇到的限制是其發光量子效率較低,制約了其在活體生物探測時的穿透深度。 圖1:本文
    的頭像 發表于 05-30 06:30 ?410次閱讀
    金銀<b class='flag-5'>納米</b>顆粒對單壁<b class='flag-5'>碳納米管</b>實現近紅外熒光增強

    九號電動將于4月19日發布新品智能碳晶電池

    天能曾推出過納米碳晶電池,該產品采用性質穩定、抗腐蝕能力強的貴金屬元素,與碳納米管通過溶膠凝膠法制備的納米碳晶材料,提升了電池的導電性能和電容性。
    的頭像 發表于 04-12 15:52 ?2340次閱讀

    日本中央大學研發新傳感器,無損檢測與三維重建獲突破

    這項研究建立在之前使用碳納米管(CNT)薄膜作為敏感的非制冷毫米波-紅外(MMW-IR)傳感器的基礎之上。該傳感器利用了光熱電(PTE)效應——這是光吸收、溫度上升、熱電轉換的結合。
    發表于 03-14 09:52 ?578次閱讀
    日本中央大學研發新傳感器,無損檢測與三維重建獲突破

    思特威推出國產5000萬像素尺寸手機圖像傳感器SC5000CS,美國將十多家中國企業列入&quot;中國軍方企業名單&qu

    ? 傳感新品 【安徽大學:受指紋/蓮藕結構啟發!基于石墨烯/碳納米管/SR復合材料的應變傳感器,用于電子皮膚】 隨著可穿戴電子設備的快速發展,人們迫切需要應變范圍寬、靈敏度高、響應速度快、耐用性強
    的頭像 發表于 02-20 08:39 ?367次閱讀
    思特威推出國產5000萬像素尺寸手機圖像傳感器SC5000CS,美國將十多家中國企業列入&quot;中國軍方企業名單&qu

    iOS18將迎蘋果史上最大革新

    蘋果公司正在積極籌備的iOS 18操作系統可能是iPhone歷史上最大的一次更新。雖然目前關于iOS 18的具體信息仍然相對較少,但已經有兩項重大改進被確認。
    的頭像 發表于 01-30 16:55 ?1525次閱讀

    碳納米管納米復合傳感器的研究進展綜述

    一維空心圓柱形碳納米管納米結構自被發現以來,在納米技術的發展中起著至關重要的作用。
    的頭像 發表于 01-18 09:18 ?1322次閱讀
    <b class='flag-5'>碳納米管</b><b class='flag-5'>納米</b>復合傳感器的研究進展綜述
    主站蜘蛛池模板: 亚洲欧美日韩国产手机在线| 优菈的乳液狂飙天堂W98| 国产午夜在线观看视频| 午夜宅宅伦电影网| 國產日韓亞洲精品AV| 中文在线观看免费网站| 人妻熟妇乱又伦精品视频中文字幕| 凤楼app| 小黄文纯肉短篇| 久久全国免费久久青青小草| 亚洲 欧美 日本 国产 高清| 厨房玩朋友娇妻中文字幕| 羞羞漫画在线播放| 久久综合网久久综合| 别插我B嗯啊视频免费| 亚洲 综合 欧美在线 热| 久久丫线这里只精品| 丰满的女朋友韩国版在线观看 | 国产剧情麻豆mv| 1973性农场未删减版| 色哟哟tv| 么公在浴室了我的奶| 国产精品第1页在线观看| 日韩欧无码一区二区三区免费不卡| 99久久爱re热6在线播放| 无敌在线视频观看免费| 伦理片在线线看手机版| 国产高清-国产av| 在线免费看a| 午夜伦伦电影理论片大片| 男男h啪肉np文总受| 99精品免费久久久久久久久日本| 四虎视频最新视频在线观看| 国产电影三级午夜a影院| 中文字幕亚洲无线码高清不卡| 色欲人妻无码AV精品一区二区| 久久亚洲精品中文字幕60分钟| 国产精品爽爽久久久久久无码 | 羽月希被黑人吃奶dasd585| 无套内射CHINESEHD| 欧美日韩免费看|