該綜述結合中國自動化科學與技術的發展狀況和中國絕大多數大學設有自動化專業的現狀, 借鑒自動化科學與技術發展歷程中的成功經驗, 結合國家社會經濟發展和國家安全對自動化系統的未來需求, 以生產制造系統、重要運載工具和人參與的信息物理系統為主要對象, 以自動化系統的發展方向—智能自主控制系統、智能優化決策系統和智能優化決策與控制一體化系統的愿景功能為目標, 以研究實現愿景功能的建模、控制與優化新算法和新的自動化系統的設計方法和實現技術以及結合重大應用領域開展的應用研究為主線, 提出了自動化科學與技術的發展方向, 并結合新興應用領域對自動化科學與技術的需求與挑戰, 提出了未來自動化科學與技術的發展方向。
自動化技術在人類生產、生活與管理進程中起到了不可替代的作用。自動化技術廣泛應用于制造業, 使以機械裝備制造等為代表的離散工業制造過程和以石油、冶金、材料等重要原材料工業和電力等能源工業為代表的流程工業過程實現了自動化, 顯著提高了產品質量和生產效率。自動化技術廣泛應用于制造企業的經營管理和生產管理中, 使企業的資源計劃和制造過程管理的效率顯著提高, 成為提高企業競爭力的核心技術[1-2]。自動化技術在航空、航天、軌道交通、汽車、海洋運載工具的導航、制導與控制、機器人的控制與運動軌跡的規劃中發揮著不可取代的作用[3]。
處處可見作為自動化技術的重要組成部分的控制技術, 控制技術在幾乎所有的主要技術革命中都發揮了重要作用。例如, 從蒸汽機到高鐵、輔助駕駛汽車、高性能飛機, 從火箭到航天器, 從有線電話到手機, 從照相機到神經影像,從敏捷制造到機器人, 從醫療設備到遠視手術等, 控制技術在上述技術革命中對提升系統性能如速度、效率、可靠性和穩定性以及減少能源消耗、成本和廢物排放等方面發揮了不可取代的作用。
當前, 發達國家將智能制造作為提升制造業整體競爭力的核心高技術。美國智能制造領導聯盟提出了實施21 世紀“智能過程制造”的技術框架和路線[5]。德國針對離散制造業提出了以智能制造為主導的第四次工業革命發展戰略, 即“工業4.0”計劃[6]。英國宣布“英國工業2050 戰略”, 日本和韓國先后提出“I-Japan 戰略” 和“制造業創新3.0 戰略”。面對第四次工業革命帶來的全球產業競爭格局的新調整, 為搶占未來產業競爭制高點, 我國宣布實施“中國制造2025"。
智能制造的關鍵是實現制造流程智能化, 這就需要將人工智能技術與制造流程的控制系統、管理系統和制造流程的物理資源深度融合與協同。迄今為止, 人工智能技術還沒有統一的、明確的界定。文獻[7] 指出, AI (Artificial intelligence) 不是單一技術, 而是應用于特定任務的技術集合。文獻[8] 指出,雖然對AI 的界定并不明確且隨時間推移不斷變化,但AI 的研究和應用多年來始終秉持一個核心目標,即使人的智能行為實現自動化或復制。人工智能技術的涵義是通過機器智能延伸和增強人類的感知、認知、決策、執行等功能, 增強人類認識世界與改造世界的能力, 完成人類無法完成的特定任務或比人類更有效地完成特定任務。
2016 年10 月, 美國白宮發布了《美國國家人工智能研究與發展策略規劃》, 謀劃美國未來的人工智能發展。2017 年7 月, 中國國務院印發《新一代人工智能發展規劃》, 人工智能正式成為我國國家戰略。2018 年3 月1 日, 美國國際戰略研究所發布報告《美國機器智能國家戰略報告》, 提出了機器智能技術對國防、經濟、社會等方面的廣泛影響和發展戰略。
美國國家情報委員會在2030 年全球趨勢(Global Trend 2030) 中, 從經濟、社會發展角度提出了未來四大重要技術, 其中, 自動化和制造技術為第二大重要技術; 華盛頓郵報網站(2013.5.24) 給出了驅動未來經濟的12 種顛覆性技術, 其中, 知識性工作的自動化列為第二種顛覆性技術。由此可見,自動化科學與技術已經成為社會經濟發展、國家安全、使人類生活變得越來越美好的不可取代的技術。
然而, 自動化科學與技術, 特別是控制科學與技術, 沒有像通訊和計算機技術那樣得到社會的理解和支持。為此, 國外學者組織了多次專題討論會, 出版了研究報告, 旨在論證系統與控制是大多數應用領域中信息和通信技術的核心, 提出了新的研究方向, 希望得到基金資助機構的優先考慮和支持[4; 9-11]。雖然這些研究報告對控制理論的發展起到了積極的促進作用, 但并沒有使系統與控制成為資助機構優先資助的領域。我國負責自動化科學與技術發展的部門曾多次組織國內學者開展自動化學科發展和優先資助領域的戰略研究, 出版了研究報告, 闡明自動化科學與技術的重要性和優先資助的研究方向[12-13]。這些研究報告對自動化學科的發展起到了積極的促進作用。雖然與國外相比, 我國有負責自動化科學與技術發展的基金資助機構與資助經費, 但是自動化科學與技術在國家社會經濟發展和國防安全中發揮的作用卻不如通訊、計算機等其他信息科學和技術那樣明顯, 獲得的資助經費也少于通訊、計算機等其他信息科學和技術。
自動化科學與技術始終圍繞著建模、控制與優化三個基本科學問題開展研究, 它所形成的核心基礎理論|建模、控制、優化理論和方法具有“使能”性。因此, 大多數工程技術與工程管理專業都將建模、控制與優化理論和方法作為該專業基礎的必修課。國外大學一般不設立自動化專業, 從事系統與控制研究的教授主要在其他工程專業講授控制理論課程。而在我國, 大多數大學設有自動化專業, 但從事控制理論研究的學術帶頭人多, 從事自動化系統技術研究的學術帶頭人少, 而且重傳統控制理論, 輕自動化系統技術。
上述研究報告主要根據理論的發展提出研究方向, 然而, 自動化科學與技術的建模、控制、優化理論與方法是通過與應用領域的實際對象結合, 研制具有動態特性分析、預測、控制與優化決策功能的自動化系統來體現其在人類認識世界和改造世界活動中發揮的不可替代的作用。
特別是, 當今國際上信息科學與技術的重要研究方向是Cyber-Physical Systems (CPS)。美國國家科學基金會在2008 年提出, CPS 是計算資源與物理資源的緊密融合與協同, 使得系統的適應性、自治力、效率、功能、可靠性、安全性和可用性遠超過今天的系統[14]。計算資源主要指自動化(建模、控制、優化)、計算機、通訊, 物理資源主要是指CPS的研究對象所涉及的領域知識。研究目標是研制實現未來需求功能的系統。智能手機、IBM 的同聲傳譯系統、AlphaGo 等智能技術系統是典型的CPS。CPS 是多學科交叉的產物, 是當今信息技術條件下的自動化系統。創造未來需求的新功能的系統已成為信息科學與技術的研究目標。
為了使中國的自動化專業在國家社會經濟發展和國家安全中發揮不可取代的作用, 本文以智能自主控制系統、智能優化決策系統和智能優化決策與控制一體化系統作為未來需求的自動化系統發展方向, 以生產制造系統和重要運載工具為主要對象,,以實現上述系統的愿景功能為目標的系統理論與技術研究為主線, 提出了自動化科學與技術的發展方向,結合新興應用領域對自動化科學與技術的需求與挑戰, 提出了未來自動化科學與技術的發展方向。
1.自動化科學與技術的定義與特征
自動化的界定并不明確, 且隨時間推移不斷變化, 但自動化的研究和應用多年來始終秉持一個核心目標: 研制系統代替人或輔助人去完成人類生產、生活和管理活動中的特定任務, 減少和減輕人的體力和腦力勞動, 提高工作效率、效益和效果。由于我國大多數大學都設有自動化專業, 科技部和國家自然科學基金委員會都設有專門部門負責自動化科學與技術的發展, 因此, 有必要從學術和專業的角度對自動化科學與技術給出定義。百度對自動化的定義如下: 廣義的自動化, 是指在人類的生產、生活和管理的一切過程中, 通過采用一定的技術裝置和策略,使得僅用較少的人工干預甚至做到沒有人工干預,就能使系統達到預期目的的過程, 從而減少和減輕了人的體力和腦力勞動, 提高了工作效率、效益和效果。由此可見, 自動化涉及到人類活動的幾乎所有領域, 因此, 自動化是人類自古以來永無止境的夢想和追求目標。
自動化科學與技術主要以工業裝備為代表的固定物體、運載工具為代表的運動體以及人參與的信息物理系統為研究對象, 以替代人或輔助人來增強人類認識世界和改造世界的能力為目的, 綜合運用控制科學與工程、系統科學與工程、信息與通信工程、計算機科學與技術、數學與人工智能等學科知識和所涉及對象的領域知識, 研究具有動態特性仿真與分析、預測、控制與優化決策功能的自動化系統設計方法和實現技術的一門工程技術學科。
自動化科學與技術具有如下明顯的特征:
1) 交叉性
自動化科學與技術是具有明顯交叉性的學科。自動化科學與技術的理論基礎(建模、控制、優化理論與方法) 的建立是由數學、物理、計算機科學、以及研究對象所涉及的領域學科交叉形成。所研制的自動化系統涉及到控制科學與工程、系統科學與工程、信息與通信工程、計算機科學與技術、數學、人工智能等學科知識和所涉及對象的領域知識。工程技術專家、數學家、經濟學家和物理學家等都對該領域的發展做出了貢獻。
2) 使能性
自動化科學與技術的核心理論基礎是動態系統的建模、控制與優化的理論與方法, 核心技術基礎是具有動態特性仿真與分析、預測、控制與優化決策功能的系統設計方法與實現技術。
自動化科學與技術的使能性表現在其動態系統建模理論與方法所提供的動態特性建模與參數估計方法有助于其他學科在研究對象的機理基礎上建立動態數學模型、進行動態特性仿真與分析的研究; 控制理論與方法所提供的反饋、前饋、預測、自適應控制器設計方法和思想以及控制系統性能分析方法有助于機械、電氣與電子、化工與冶金等其他學科領域涉及的控制系統設計與分析的研究; 優化理論與方法所提供的靜態與動態優化決策理論與方法有助于其他學科領域涉及的系統優化運行和優化決策的研究。
3) 系統性
系統性是自動化科學與技術的重要特征。自動化科學與技術總是從“系統” 的角度來分析與研究所涉及到的研究對象的動態建模、控制和優化決策。特別是反饋控制, 通過反饋機制改善了被控對象的動態特性, 形成的反饋控制系統可以達到預期的目的。自動化科學與技術的建模、控制、優化理論與方法是通過具有動態特性分析、預測、控制與優化決策功能的系統來體現在人類認識世界和改造世界活動中發揮的不可替代的作用。今天, 大型而復雜的物理系統與越來越多的分布式計算單元相結合用以監測、控制、管理和優化決策。物理系統的各個元素通過物質、能量或動量的交換而相互聯系, 而控制和管理與優化決策系統的各個單元則通過通信網絡相互聯系。例如, 智能電網、水資源控制與管理系統、交通管理與指揮系統、智能工廠、智慧城市、智慧醫療等。只有對這種人參與的信息物理系統進行建模、預測、控制和優化決策的深入研究, 才有可能更好地設計監測、控制、管理和優化決策系統, 才能實現節能減排, 有效地改善人類的生活。
4) 廣泛性
通過以上對自動化科學與技術的交叉性、使能性和系統性的分析, 可以看到自動化科學與技術還具有廣泛性的特征。
自動化科學與技術的研究對象具有廣泛性。研究對象可以是固定的物體, 如以機械制造工業為代表的離散工業和以原材料工業為代表的流程工業中的生產制造裝備、建筑設施等; 研究對象可以是移動的物體, 如航天航空器、軌道交通與汽車、陸運運動體、機器人等; 研究對象也可以是人參與的信息物理系統, 如企業管理系統、交通管理系統、生物系統、社會管理與經濟系統。
自動化科學與技術的應用領域具有廣泛性。采用自動化科學與技術所研制的自動化系統廣泛應用到工業、農業、軍事、科學研究、交通運輸、商業、醫療、服務和家庭等各個領域, 涉及到人類的生產、生活和管理的一切過程。
自動化科學與技術針對同一研究對象所研究的自動化系統的功能具有廣泛性和多樣性。例如, 針對工業過程研究動態特性建模可以實現工業過程的動態特性仿真與分析; 研究過程控制可以實現工業過程的輸出跟蹤工藝所確定的設定值; 研究過程運行優化可以實現表征工業過程的加工產品的質量、效率、消耗等運行指標的優化控制; 研究由不同工業過程組成的全流程生產線的協同優化控制可以實現生產線生產指標的優化控制; 研究企業經營決策、計劃調度的管理與優化決策可以實現企業的綜合生產指標優化; 研究生產工況的建模可以實現異常工況的監控與自愈控制。
2.自動化科學與技術的發展歷程
很久以前, 大自然就發現了反饋。它創造了反饋機制并且在各個層次利用這些機制, 它是機體平衡和生命的核心[11]。反饋控制系統最早出現在風車上。當時發明的離心調速器就是一種反饋控制系統,其目的是使風車保持恒定轉速運行[15]。為了使織布機和其他機器保持恒定轉速, 1788 年, 吉姆斯·瓦特成功地改造了離心調速器。離心調速器是一個比例控制器, 因此會產生穩態誤差。后來的調速器加入了積分作用[15-16], 從此調速器成了蒸汽機不可分割的一部分。蒸汽機與調速器的廣泛應用推動了第一次工業革命。如何設計一個穩定的調速器成為一個極富挑戰的科學難題。麥克斯韋(Maxwell) 開始了調速器的理論研究[17]。麥克斯韋推導出三階線性微分方程來描述調速系統, 同時發現可以通過閉環系統特征方程的根確定系統的穩定性。緊接著, 數學家勞斯和赫爾維茨建立了一般線性系統的穩定性判據[18-19]。上述工作奠定了控制理論的基礎。
19 世紀初, Sperry 發明了陀螺駕駛儀, 應用于船舶駕駛[16; 20-21]。陀螺駕駛儀可以調整控制器參數, 也可以設置目標航向。該控制器是一個典型的PID 控制器。PID 控制不僅廣泛應用于上述領域,而且應用于電力工業, 使傳送帶于1870 年開始在辛辛那提屠宰場使用, 推動了基于勞動分工和以電為動力的大規模生產, 形成了第二次工業革命。如何選擇PID 控制器參數使控制系統具有良好的性能的研究吸引了大量的工程師和科學家, 直到1942 年, Ziegler Nichols 建立了PID 參數的整定方法[22]。
為了解決長途電話的失真問題, 貝爾實驗室的Harold Black 工程師發明了負反饋放大器[23]。不穩定或“嘯叫" 常常出現在反饋放大器的試驗中。因此, 長途電話通信的技術挑戰帶來了反饋回路的穩定性問題。1932 年, 亨利·奈奎斯特(Harry Nyquist) 開始研究這個問題, 建立了“奈奎斯特判據"[24]。1943 年, 貝爾實驗室的伯德領導的小組設計M9 火炮指揮控制系統, 采用了伯德發明的設計反饋控制系統的工具|Bode 圖[25]。上述成果奠定了經典控制理論的基礎。
50 年代末到60 年代初, 航天技術的發展涉及到大量的多輸入多輸出系統的最優控制問題, 用經典控制理論已難以解決。數字計算機的出現使得亨利·龐加萊(1875~1906) 的狀態空間表述方法可以作為被控對象的數學模型和控制器設計與分析的工具。于是產生了以極大值原理、動態規劃和狀態空間法為核心的現代控制理論[26]。然而, 現代控制理論難以應用于工業過程。工業過程往往是由多個回路組成的復雜被控對象, 難以用精確數學模型描述。大規模工業生產的需求、計算機和通訊技術的發展催生了一種專門的計算機控制系統| 邏輯程序控制器(PLC)。1969 年, 美國Modicon 公司推出了084PLC[27]。該控制系統可以將多個回路的傳感器和執行機構通過設備網與控制系統連接起來, 可以方便地進行多個回路的控制、設備的順序控制和監控。1975 年, Honeywell 和Yokogawa 公司研制了可以應用于大型工業過程的分布式控制系統(DCS)[28]。以組態軟件為基礎的控制軟件、過程監控軟件的廣泛應用使得生產線的自動化程度更高, 推動了第三次工業革命。
在工業過程控制中, 現有的控制理論和控制系統的設計方法的研究集中在保證閉環控制回路穩定的條件下, 使被控變量盡可能地跟蹤控制系統的設定值。從工業工程的角度看, 自動控制或者人工控制的作用不僅僅是使控制系統輸出很好地跟蹤設定值,而且要控制整個生產設備(或過程) 的運行過程, 實現運行優化, 即使反映產品加工過程的質量、效率的運行指標盡可能高, 反映消耗的運行指標盡可能低。工業過程的運行優化需求使得實時優化(RTO) 和模型預測控制(MPC) 廣泛應用于可以建立數學模型的石化工業過程。對于難以建立數學模型的冶金工業過程, 高技術公司針對具體的工業過程開發了工藝模型進行開環設定控制, 數據驅動的智能運行優化控制技術的研發受到工業界和學術界的廣泛關注[29-32]。
大規模的工業生產迫切需要生產企業的管理高效化。自動化技術開始應用于企業管理。20 世紀60年代初計算機財務系統問世, 從此人工的管理方式開始逐漸被計算機管理系統代替。20 世紀60 年代末70 年代初, 財務系統擴充了物料計劃功能, 發展成為物料需求計劃系統(Material Requirements Planning, MRP)。20 世紀70 年代末80 年代初, MRP系統中增加了車間報表管理系統、采購系統等, 于是發展成為MRP II。但是MRP II 不能配置資源, 因此配置資源計劃系統(Distribution Resource Planning, DRP) 出現了, 單一功能的制造過程管理系統(如質量管理系統) 也相繼出現。到20 世紀80 年代末90 年代初, MRP II 逐漸演變為企業資源計劃(Enterprise Resource Planning, ERP), DRP 演變為供應鏈管理(Supply Chain Management, SCM),而車間層應用的專業化制造管理系統演變成集成的制造執行系統(Manufacturing Execution System, MES)[33-34]。ERP 和MES 廣泛應用于生產企業,顯著提高了企業的競爭力。
3.自動化科學與技術面臨的挑戰與發展方向
縱觀自動化科學與技術發展史, 給我們如下啟示: 1) 自動化科學與技術的產生和發展來自人類改造自然的實際需求; 2) 自動化科學與技術的產生和發展源于控制科學與工程; 3) 實際需求與實現技術推動了控制系統的出現與發展; 4) 控制系統的設計與性能分析的需求產生和推動了控制理論的發展,控制理論的發展對控制系統的設計與性能分析起到了重要推動作用; 5) 以工業系統為代表的固定物體、以船舶、飛行器、火炮為代表的運動體的控制系統的設計與性能分析推動了控制理論的形成與發展。
經過改革開放, 中國的自動化科學與技術取得了巨大發展, 主要體現在控制理論與控制工程、系統工程、導航、制導與控制、檢測技術與裝置、模式識別與智能系統、機器人等方面以及在社會經濟發展、國家安全等方面的諸多應用研究。基礎研究已達到國際先進水平, 在自動化科學與技術的國際頂級期刊IEEE 匯刊與IFAC 會刊發表的論文數量與質量顯著提高。特別是結合國家在智能制造、航天、軌道交通等領域的重大需求開展的自動化科學與技術研究取得了一批推動上述領域科技進步并產生重要國際影響的學術成果。總體上來看, 基礎研究還處于跟跑與同跑階段, 缺乏領跑的研究成果, 在國家社會經濟發展和國防安全中發揮的作用不如其他信息科學和技術那樣明顯。
中國的社會經濟與國家安全進入了快速發展階段, 人們在生產、生活與管理中提出了更高的要求。國家實施的智能制造、互聯網+、大數據、新一代人工智能等重大發展戰略對自動化科學與技術的發展提出了新的要求。移動互聯網、云計算、大數據應用技術和人工智能技術的突破性發展促使工程技術人員與研究人員將以自動化、計算機、通訊為主的計算資源與以研究對象為主的物理資源深度融合與協同, 使研究的系統在適應性、自治力、效率、功能、可靠性、安全性和可用性方面遠超過今天的系統。
為了適應國家發展的需求和人們在生產、生活與管理中的新要求, 今天關鍵的基礎設施系統如工業系統、交通系統、能源系統、水資源系統、生物系統、醫療系統、通訊系統等正在向網絡化、智能化方向發展, 這就對控制系統和管理與決策系統提出了新的要求。控制系統正在向智能自主控制系統的方向發展, 管理與決策系統正在向智能優化決策系統和智能優化決策和控制一體化系統方向發展。
面向生產制造過程的智能自主控制系統的愿景功能是: 智能感知生產條件變化, 自適應決策控制回路設定值, 使回路控制層的輸出很好地跟蹤設定值,對運行狀況和控制系統的性能進行遠程移動與可視化監控和自優化控制, 使生產制造系統安全、可靠、優化與綠色運行[35]。
面向生產制造企業的智能優化決策系統和智能優化決策與控制一體化系統主要是制造全流程智能協同優化控制系統和智能優化決策系統。智能協同優化控制系統的愿景功能是: 智能感知運行工況的變化, 以綜合生產指標的優化為目標, 自適應決策智能自主控制系統的最佳運行指標; 優化協同生產制造全流程中的各工業過程(裝備) 的智能自主控制系統; 實時遠程與移動監控與預測異常工況, 自優化控制, 排除異常工況, 使系統安全優化運行, 實現制造流程全局優化。智能優化決策系統的愿景功能是:實時感知市場信息、生產條件和制造流程運行工況;以企業高效化和綠色化為目標, 實現企業目標、計劃調度、運行指標、生產指令與控制指令一體化優化決策; 遠程與移動可視化監控決策過程動態性能, 自學習與自優化決策; 人與智能優化決策系統協同, 使決策者在動態變化環境下精準優化決策。
面向航天器、汽車、陸用武器等重要運載工具的智能自主控制系統的愿景功能是: 快速準確感知環境信息, 識別環境的不確定性和多樣性任務, 使被控對象成為智能自主體, 能夠修正自己的行為以適應環境的不確定性, 自主決策與自主控制, 實時安全可靠地完成任務。
面向運載工具的智能決策系統和智能決策與控制一體化系統是多智能體協同控制系統和導航與制導一體化控制系統。多智能體協同控制系統的愿景功能是: 感知整個群體區域環境信息, 自主學習, 協同優化決策, 自主協同運行, 快速、可靠、安全地完成總體目標任務。導航與制導一體化控制系統的愿景功能是: 快速感知環境信息, 融合多元異構信息,自主產生精確導航信息, 自動為制導系統給出導航信息, 制導與控制系統使被控運載工具快速、準確地跟蹤導航信息, 準確、迅速、安全可靠地到達目的地。
為了實現生產制造過程未來需求的自動化系統的愿景功能, 需將生產制造過程的自動化系統發展為五大系統: 1) 制造過程智能自主控制系統; 2)制造全流程智能協同優化控制系統; 3) 智能優化決策系統; 4) 智能安全運行監控與自優化系統; 5)工業過程虛擬制造系統。由五大系統構成兩層結構的現代集成制造系統, 即智能優化決策系統和制造流程智能化控制系統, 取代由ERP、MES 和PCS(DCS) 組成的三層結構集成制造系統。制造流程智能化控制系統由生產制造過程智能自主控制系統和制造全流程智能協同優化控制系統組成。智能安全運行監控和自優化系統和制造過程虛擬制造系統保證構成兩層結構的兩大系統安全可靠優化運行。
為了實現運載工具未來需求的自動化系統的愿景功能, 需將運載工具自動化系統發展為三大系統: 1) 智能自主控制系統; 2) 多智能體協同控制系統; 3) 導航制導一體化控制系統。
以實現上述系統的愿景功能為目標, 開展上述新系統理論與系統實現技術的研究以及在智能制造、機器人、航天航空、高鐵等重大應用領域的應用研究, 將會成為對我國社會經濟發展和國家安全做出重要貢獻的自動化科學與技術的發展方向。
目前, 復雜制造全流程中的工況識別、運行控制和ERP 與MES 中的決策仍然依靠知識工作者。知識工作者依靠數據、文本、圖像等信息和經驗進行工況識別、運行控制和決策, 難以實現離散工業產品個性定制的高效化和流程工業的高效化與綠色化[36]。然而, 大數據驅動的人工智能技術取得了革命性進步。自動化科學與技術本質上是數學模型驅動的人工智能技術。大數據驅動的人工智能技術與自動化科學與技術的結合必將產生人工智能驅動的自動化。大數據、移動互聯網、云計算為人工智能驅動的自動化開辟了新途徑。人工智能驅動的自動化必將在智能制造中發揮更重要的作用。
自動化技術不僅在航空、航天、軌道交通、汽車、海洋運載工具的導航、制導與控制、機器人的控制與運動軌跡的規劃中發揮著不可取代的作用, 而且開始應用于交通系統、能源系統、水資源系統、生物系統、醫療系統、通訊系統等關鍵基礎設施系統的安全監控與管理中。如同企業管理系統, 上述系統本質上是人參與的信息物理系統。要使這些關鍵基礎設施系統安全、可靠、高效和綠色地運行, 必須開展這類系統的建模、仿真、預測和控制與優化決策理論與技術的研究。這必將推動自動化科學與技術的發展。
信息技術的發展促進了智能工廠、智能電網、智能交通、智慧城市等人參與的信息物理系統以及量子通訊、微納制造和生物系統的發展。實現上述新興領域的檢測、控制、管理和優化決策對已有的建模、控制、優化理論和技術提出了挑戰。因此, 應將未來發展的自動化科學與技術作為發展方向, 開展下列研究:
a) 人工智能驅動的自動化;
b) 新一代網絡化與智能化管控系統;
c) 人參與的信息物理系統中的自動化科學與技術;
d) 新興應用領域(量子通訊、微納制造和生物系統) 中的自動化科學與技術。
開展上述自動化科學與技術發展方向的研究必須攻克下列挑戰的科學難題:
a) 機理不清的具有綜合復雜性的動態系統建模;
b) 具有綜合復雜性的被控對象的高性能控制;
c) 多沖突目標、多沖突約束、多尺度的復雜動態系統優化決策與控制一體化;
d) 在大數據、移動通訊、云計算環境下, 網絡化與智能化的自動化系統的設計與實現技術[37-39]。
回顧自動化科學與技術的發展歷程, 我們清楚地看到, 只有結合重大需求, 采用CPS 思想, 即將自動化(建模、控制、優化)、計算機和通訊技術等計算資源與研究對象的物理資源緊密融合與協同, 以系統的未來需求的愿景功能為目標, 研究實現未來需求的愿景功能的建模、控制和優化的新算法和研究采用大數據應用技術、移動通訊、云計算等新一代信息技術研制新的自動化系統的設計和實現技術,并結合重大應用領域開展應用研究才有可能解決上述科學難題。由于我國的社會經濟發展和國家安全對自動化科學與技術有重大需求, 我國大多數大學都設有自動化專業, 有國際上最大的自動化科學與技術的研究隊伍, 國家又有專門負責自動化科學與技術發展的部門和專項科研經費, 因此, 我國廣大的從事自動化科學與技術的研究人員完全有可能做出對中國社會經濟發展和國家安全有重要影響、引領自動化科學與技術發展的研究成果。
4.結論
本文以創造未來需求新功能的自動化系統為自動化科學與技術的研究目標, 以國家社會經濟發展和國家安全對自動化系統的未來需求為導向, 提出生產制造過程未來需求的自動化系統為下列五大系統: 1) 制造過程智能自主控制系統; 2) 制造全流程智能協同優化控制系統; 3) 智能優化決策系統; 4)智能安全運行監控與自優化系統; 5) 工業過程虛擬制造系統; 提出運載工具未來需求的自動化系統為下列三大系統: 1) 智能自主控制系統; 2) 多智能體協同控制系統; 3) 導航制導一體化控制系統。
以實現上述系統的愿景功能為目標, 研究建模、控制和優化的新算法, 研究采用移動通訊、云計算、人工智能技術等新一代信息技術的新的自動化系統的設計方法和實現技術, 并結合重大應用領域開展應用研究將成為自動化科學與技術的發展方向。
由于人參與的信息物理系統如智能工廠、智能電網、智能交通、智慧城市等和量子通訊、微納制造和生物系統等新興領域對自動化科學與技術提出了新的需求與挑戰, 因此, 下列研究: 1) 人工智能驅動的自動化; 2) 新一代網絡化與智能化管控系統; 3)人參與的信息物理系統中的自動化科學與技術; 4)新興應用領域(量子通訊、微納制造和生物系統) 中的自動化科學與技術, 將成為未來自動化科學與技術的發展方向。
在上述發展方向做出對國家社會經濟發展和國家安全有重要貢獻、引領自動化科學與技術發展的研究成果, 需要一大批從事研究、設計、開發、運營未來需求的自動化系統的創新人才。這就需要重新審視和考慮現行的自動化專業人才培養模式、研究經費資助機制、評價機制等, 并進行必要的改革。
-
自動化
+關注
關注
29文章
5598瀏覽量
79415 -
工業4.0
+關注
關注
48文章
2015瀏覽量
118689
原文標題:柴天佑院士:自動化科學與技術發展方向
文章出處:【微信號:mcuworld,微信公眾號:嵌入式資訊精選】歡迎添加關注!文章轉載請注明出處。
發布評論請先 登錄
相關推薦
評論