色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

您好,歡迎來電子發燒友網! ,新用戶?[免費注冊]

您的位置:電子發燒友網>電子百科>電腦硬件>服務器>

SMP(對稱多處理)系統

2009年12月17日 14:09 m.1cnz.cn 作者:佚名 用戶評論(0
關鍵字:

SMP(對稱多處理)系統

Can SMP computing help predictive maintenance?

  This question relates to last week’s question about smart instruments and predictive maintenance.

  Symmetric multiprocessing (SMP) computer technology has been around for a few decades. Early SMP computers were used to create so-called “supercomputers” capable of tackling extreme compute-intensive problems by breaking the algorithm into separate modules that individual processor cores can operate on simultaneously.

  There are two basic SMP strategies: pipeline and parallel processing. A pipeline is a set of operations performed sequentially on data packets visualized as streaming through the computer. Say the computation has been divided into 5 modules. A data packet comes into the first processor, which implements the first program module, then passes the result on to the second processor. The second processor implements the second module, while the first processor operates on the next data packet. Data packets continue streaming down the pipeline in assembly line fashion, each processor performing part of the analysis and passing the result on to the next processor. Like an assembly line, the pipeline takes raw data in at one end and pours finished analysis results out at the other.

  Symmetric multiprocessing architecture has several processor cores connected to a common memory. The computation work can then be divided between the processor cores, improving system performance.

  Parallel processing implements the complete algorithm on each processor. The system divides the data into chunks, with the number of chunks equaling the number of processors. Each processor does the complete analysis on its data chunk, and passes the result to the output.

  More useful is a hybrid strategy, which combines parallel and pipeline processing. Some modules are performed in parallel, and some in series. The architecture can even change with time. For example, all of the processors may start off performing part of the analysis in series. When the whole data set has been analyzed, the processors may reorganize into a pipeline to further analyze the first-pass results. Then, maybe they reorganize again into a series-parallel arrangement for a third pass, and so forth.

  These strategies were worked out in an era of single-core microprocessors. Today, we have multicore microcontrollers with as many as eight cores, and on-chip memory and I/O functions. The SMP strategy, however, is still the same.

  Historically, SMP computing’s main purpose was to perform enormous compute-intensive projects in reasonable amounts of time. Early SMP applications included simulations of protein folding and global circulation climate models. Since multicore processors have become readily available, however, we have found other uses for them. For example, in a control application, we might run a real-time application on one, dedicated, core, while running other, less critical, applications, such as a human-machine interface, on another.

  Predictive maintenance, on the other hand, is a system-level concept. The idea is to monitor selected variables that engineers believe to have predictive power. For example, a rise in a bearing’s temperature may warn of impending need for additional or replacement lubricant. Automatically monitoring such variables makes it possible for the system to tailor the maintenance program to the machinery’s actual needs, saving time, supplies, and replacement parts, and avoiding unplanned work stoppages. The alternative is scheduled maintenance, which generally provides more maintenance than necessary on average, but may miss extraordinary events.

  Because machine conditions typically change over a time scale that is very long compared to computer processing speeds. Control loops can be closed on time scales varying from hours to months. Thus, SMP computing’s speed advantage is not typically needed. There may, however, be other advantages to applying SMP architecture to predictive maintenance applications. For example, it may be advantageous to isolate the predictive maintenance functions from real-time motion-control applications running on a multicore system. The SMP architecture, which gives all processors access to all data, would then allow the predictive maintenance system to monitor data collected for process-control purposes, and use it for maintenance scheduling purposes.

  Speeds needed for effective control may vary over several orders of magnitude within one machine or system. Multiprocessor architectures allow control engineers to apply just the right computer speed for each control loop. Symmetric multiprocessor architecture may, however, not be the right architecture. In most complex control applications, an assymetric, asynchronous architecture with distributed memory would be a better fit.

  Such an architecture arranges control loops in a hierarchy, with small embedded processors closing tight loops around individual degrees of freedom. The next level consists of control loops coordinating several degrees of freedom across a single machine to accomplish more complex tasks, such as moving a robot's end effector through a trajectory in three-space. A third level might coordinate the activities of multiple machines to integrate a process. Larger — and typically slower — loops coordinate wider activities, reaching up to the manufacturing execution system (MES), or even enterprise level.

  Each level carries responsibility for its own activities; relying on data provided by, and implementing decisions via control signals sent to, the next lower level; and exchanging information with the next higher level. Information storage and processing needs generally are quite modest at lower levels, and increase at higher levels where decisions require pooling information from many sources and solving more complex analytical models.

  Automated predictive maintenance would be implemented as a task at a relatively low level, where computation loads are relatively modest. SMP technology would be of relatively little value at that level.

非常好我支持^.^

(0) 0%

不好我反對

(0) 0%

相關閱讀:

( 發表人:admin )

用戶評論

      ?
      主站蜘蛛池模板: 亚洲在线2018最新无码 | 久久精品国产欧美日韩99热 | 亚洲国产在线视频中文字 | qvod 电影| 国内外成人免费在线视频 | 美女诱点第6季 | 精品久久香蕉国产线看观看麻豆 | 久久国产精品人妻中文 | 顶级欧美不卡一区二区三区 | 暖暖直播免费观看韩国 | 久久棋牌评测 | 最新影音先锋av资源台 | 在线免费视频国产 | 亚洲激情一区 | 7756短视频 | 超碰人热人人热人人看 | 亚洲AV久久无码精品九号软件 | 性色无码AV久久蜜臀 | 久久精品国产清白在天天线 | 国产在线公开视频 | 99精品国产自在自线 | 国内精品久久久久久久试看 | 色欲av蜜臀av高清 | 99精品电影 | 日本女人bb | 午夜理伦大片一级 | 国产AV精品国语对白国产 | 99精品国产福利在线观看 | 精品日韩二区三区精品视频 | 97在线看视频福利免费 | 欧美性色生活片天天看99顶级 | 国产99久久久欧美黑人刘玥 | 国产国产成年在线视频区 | 亚洲AV无码专区国产精品麻豆 | 国产区精品综合在线 | 久久内在线视频精品mp4 | 富婆夜店找黑人猛男BD在线 | vidosgratis tv少女 | 色就色综合 | 欧美性FREE玩弄少妇 | 真人女人无遮挡内谢免费视频% |