色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

電子發燒友App

硬聲App

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

電子發燒友網>通信網絡>通信新聞>毫米波收發機芯片該如何實現

毫米波收發機芯片該如何實現

收藏

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴

評論

查看更多

相關推薦

5G毫米波天線的最優技術選擇

和低噪聲放大器,但如果 SiGe BiCMOS能夠滿足要求,利用它將能實現較高的集成度。對于5G毫米波系統,業界希望將微波器件安裝在天線基板背面,這要求微波芯片的集成度必須大大提高。例如,中心頻率為
2019-06-12 06:55:46

5G毫米波技術面臨著什么挑戰?

僅要兼容LTE網絡,還須支持公用免費(unlicensed,設備廠商不需要購買許可費用)或毫米波頻段(注:目前毫米波波段基本免費,但免費波段不等于毫米波波段)。嚴格意義的毫米波頻率為30GHz至300GHz,對應波長分別為10mm到1mm,毫米波通信將極大提高無線數據傳輸的速率。
2019-07-11 07:46:45

5G毫米波是如何引入的?毫米波有哪些致命弱點?

5G毫米波是如何引入的?毫米波有哪些致命弱點?5G的超高下載速率是怎么做到的?5G毫米波是怎么揚長和避短的?
2021-06-17 07:23:56

5G毫米波有哪些優勢?

個關鍵的提升就是能夠利用更多的頻譜資源來滿足不同種類的業務需求,其中就包括使用毫米波的頻段資源來實現極高帶寬和極低時延。   隨著業務對帶寬需求的不斷增加,通信頻譜不斷向更高頻譜延伸,5G毫米波具有
2023-05-05 10:49:47

5G毫米波終端大規模天線技術及測試方案介紹

【摘要】本文首先介紹了全球毫米波頻譜劃分情況,然后通過對毫米波特性的分析,總結了毫米波終端將面臨的技術挑戰,著重介紹了終端側大規模天線技術、毫米波射頻前端技術的研究進展,并根據毫米波終端的特點分析了
2019-07-18 08:04:55

5G原型演示系統,毫米波MIMO技術要哪些特性?

在目前大部分5G原型演示系統中,都采用毫米波MIMO技術,而這種技術對于毫米波天線開關也有著極為嚴苛的高標準。MACOM推出SMT封裝的MASW-011098毫米波天線開關利用該公司專利的砷化鋁鎵
2019-02-15 10:04:31

5G干貨|全面認識毫米波頻譜與技術

`在移動通信發展的30年間,毫米波一直都是一片未經開墾的蠻荒之地,諸如高通、愛立信、華為、中興等通信巨頭的實驗室都對它持續地研究,現如今毫米波在生活中的應用已越來越多,毫米波雷達技術、5G技術中均有
2020-03-12 14:10:38

5G時代的挑戰,毫米波解決方案的測試和驗證設計

`為了適應5G移動通信所需的高吞吐率和低延遲要求,業界正在擴展5G通信系統的工作頻段到毫米波的范疇。另外為了實現更遠的傳輸距離以及更高的頻譜利用率,在系統的收發端需要有支持多個天線陣元(數十或數百
2018-07-23 10:51:32

60GHz毫米波通信技術發展歷程概述

60GHz毫米波通信的研發工作正日益活躍起來(見圖1)。技術面向PC、數字家電等應用,能夠實現設備間數Gbps的超高速無線傳輸。在業內多家廠商的積極推動下,毫米波通信今后的應用將會不斷擴展
2019-06-14 06:17:03

77G毫米波雷達在 ADAS 功能和 AD 自動駕駛中的角色和功能

射頻技術的發展,毫米波半導體技術已經比較成熟,雷達前端電子器件集成度很高,雷達模組重量輕,抗震性能理想。而且隨著雷達芯片的大規模量產,組件成本低,可以在車身上安裝多組、級聯和拼接后實現 360°環視
2020-06-03 07:00:00

毫米雷達概述

,目前未對國 內開放。飛思卡爾采用多芯片射頻系統的毫米波雷達技術,收發通道為 2T/3R,系統特點為:2發3收,發射模塊、接收模塊分離,集成度較高,采用方案來設計77GHz射頻前端電路具有一定的靈活性
2019-12-16 11:11:22

毫米波/激光/超聲波雷達的區別是什么?

毫米波/激光/超聲波雷達的區別是什么?
2021-09-29 06:23:42

毫米波收發器的接口不同

頻率越高,連接器找到配合的難度就越大。成功連接的關鍵是找到一個好的伴侶。事實證明,在毫米波頻率下找到配合可能更困難。在我們討論連接之前,讓我們考慮以毫米波頻率工作的收發器的框圖。物理學中的實施問題意
2018-07-27 16:30:33

毫米波芯片測量液位物位的解決方案

毫米波雷達技術方案 芯片介紹 ADT3102(77Ghz毫米波雷達芯片) 單芯片集成2路收2路發射頻通道,FMCW產生器,ADC,DSP,MCU(ARM、M3)等 集成了SPI、UART等多種接口
2023-05-09 10:32:44

毫米波為什么這么重要?

毫米波究竟是什么,為什么這么重要?
2020-12-03 07:53:53

毫米波傳感器實現邊緣智能的方法

提升系統可靠性的同時,減少決策延遲和網絡成本;如果服務器關閉,您最不愿意看到的就是傳感器無法檢測物體和做出決策! 邊緣智能和連接 毫米波(mmWave)傳感器以兩種方式實現邊緣智能。首先,毫米波可提供
2022-11-10 06:52:04

毫米波傳感器如何實現邊緣智能

通過毫米波傳感器在邊緣進行智能處理可以減少發送到中央服務器的數據量,增加傳感器本身的決策量。
2020-08-07 06:46:59

毫米波傳感器是如何實現邊緣智能的?

毫米波傳感器是如何實現邊緣智能的?片上處理如何使毫米波傳感器根據其特征實時識別和分類目標?
2021-06-17 06:43:35

毫米波傳感器的資料解讀

中保持生產力,如圖1所示。圖1:毫米波(mmWave)傳感有助于監控機器周圍區域,實現實時事件管理TI毫米波傳感器如何在工廠實現高級智能化德州儀器(TI)的毫米波(mmWave)傳感器能夠利用集成
2022-11-08 06:54:12

毫米波傳感器能帶來高精度體驗嗎

全新的高精度單芯片毫米波(mmWave)傳感器正在順應世界高速發展的潮流,為從汽車雷達到工業自動化的眾多應用提供支持。這些精密的傳感器為設計人員帶來了全新的平臺,能夠幫助汽車、樓宇、工廠和無人機實現更高的智能化、安全性和自主性。例如毫米波傳感器這樣的技術進步猶如一場及時雨。
2020-05-19 06:34:53

毫米波應用的應用,四路毫米波空間功率合成技術介紹

,插入損耗小于 0.6dB。圖 6 功率合成器仿真結果四、結論本文提出了一種適用于毫米波頻段的基于波導的四路空間功率分配 / 合成網絡。網絡利用矩形波導作為輸入和輸出端口,通過一分四功率分配結構進行功率
2020-11-05 09:43:08

毫米波技術基礎

什么是毫米波技術? 與其他低頻技術相比,它的特點是什么?這篇文章介紹了極高頻(mmwave) ,包括它們的頻率、傳播特性以及常見應用的優缺點。什么是毫米波?顧名思義,極高頻是指波長(λ)約為1毫米
2022-07-29 22:43:59

毫米波技術的發展進程

1)極寬的帶寬。通常認為毫米波頻率范圍為26.5~300GHz,帶寬高達273.5GHz。超過從直流到微波全部帶寬的10倍。即使考慮大氣吸收,在大氣中傳播時只能使用四個主要窗口,但這四個窗口的總帶寬
2019-07-03 08:13:34

毫米波無線電的最優技術選擇探討

基于GaAs功率放大器和低噪聲放大器,但如果 SiGe BiCMOS能夠滿足要求,利用它將能實現較高的集成度。對于5G毫米波系統,業界希望將微波器件安裝在天線基板背面,這要求微波芯片的集成度必須大大提高
2019-07-11 07:57:45

毫米波是什么

毫米波是什么毫米波移動化頻譜的另一端:6 GHz以下頻段
2021-01-28 07:08:27

毫米波是什么?其特點有哪些?

5G如何實現如此高的傳輸速率呢?毫米波是什么?其特點有哪些?
2021-05-06 06:22:29

毫米波的PCB平面傳輸線技術

的傳輸線技術。但由于這幾種PCB平面傳輸線的結構不同,導致其在信號傳輸時的場分布也各不相同,從而在PCB材料選擇、設計和應用,特別是毫米波電路時表現出不同的電路性能。本文將以毫米波下通用的PCB平面傳輸線技術展開,討論電路材料、設計等對毫米波電路性能的影響,以及如何優化。
2019-06-24 06:35:11

毫米波組件的發展趨勢

很久以來,毫米波組件與技術一直與輻射測量和安全的點到點通信有著緊密的聯系。但隨著產生和檢測頻率在30GHz以上信號的方法變得越來越實用,毫米波組件和子系統的使用正變得越來越廣泛。電磁仿真軟件工具
2019-06-24 08:21:24

毫米波終端技術實現挑戰及測試方案

之一的毫米波技術已成為目前標準組織及產業鏈各方研究和討論的重點,毫米波將會給未來5G終端的實現帶來諸多的技術挑戰,同時毫米波終端的測試方案也將不同于目前的終端。本文將對毫米波頻譜劃分近況,毫米波終端技術實現挑戰及測試方案進行介紹及分析。
2021-01-08 07:49:38

毫米波雷達具體有什么作用?

毫米波雷達的作用和有效距離式多少?是否可以用于探測人體生物電信號?
2021-12-18 09:56:13

毫米波雷達工作原理,雷達感應模塊技術,有什么優勢呢?

可以做到體積小、重量輕、發射機容易實現而且饋線損耗也較低。市場需求能夠促進技術發展,飛睿科技毫米波雷達逐漸走進安防領域。隨著技術的進步,器件成本的下降,毫米波雷達用于安防已不是問題。利用窄脈沖或寬帶
2021-09-22 16:17:32

毫米波雷達方案對比

發展為主動安全提供了技術可行性,汽車微波/毫米波雷達傳感器正是實現功能的核心部件之一。微波/毫米波雷達是利用目標對電磁反射來發現目標并測定其位置的。毫米波頻率高、波長短,一方面可縮小從天線輻射的電磁
2018-08-04 09:16:48

毫米波雷達是什么?

所謂的毫米波是無線電波中的一段,我們把波長為1~10毫米的電磁毫米波,它位于微波與遠紅外相交疊的波長范圍,因而兼有兩種波譜的特點。毫米波的理論和技術分別是微波向高頻的延伸和光波向低頻的發展。
2019-08-02 08:49:32

毫米波雷達的特點是什么

毫米波雷達的特點、優點、缺點;毫米波雷達測距原理,測速原理,角速度測量原理;毫米波雷達系統架構。 毫米波雷達:ADAS/自動駕駛核心傳感器毫米波的波長介于厘米和光波之間, 因此毫米波兼有微波制導
2021-07-30 08:05:28

毫米波雷達(一)

系統主要包括收發天線、射頻前端、調制信號、信號處理模塊等。毫米波雷達通過接收信號和發射信號的相關處理實現對目標的探測距離、方位、相對速度。  毫米波雷達發展現狀  目前,毫米波雷達主要為24GHz
2019-12-16 11:09:32

ADAS系統無人駕駛的眼睛毫米波雷達

和中短距離的汽車應用。77GHz的波長是3.9mm,是真正意義上的毫米波,正逐步取代24GHz,成為汽車領域主流的傳感器。2:毫米波雷達的基本結構硬件核心:MMIC芯片和天線PCB板,以FMCW車載雷達
2023-04-18 11:42:23

TI毫米波技術讓人們看的更清晰

已經是過去的老舊雷達屏幕了。現如今,采用TI獨特毫米波技術的毫米波傳感器,可以幫助我們看到具有詳細輪廓的物體并對其進行分類,實現“眼見為實”。
2019-07-26 06:29:58

一種兩次變頻法的毫米波發射端上變頻方案設計

實現硬件平臺的開放性、數字化、標準化和可編程化。數字上變頻和下變頻技術是構建毫米波通用硬件平臺的關鍵技術。基于此,本文給出一種兩次變頻法的毫米波發射端上變頻方案,并利用Altera公司的Cyclone
2019-06-19 08:27:35

主流廠牌的毫米波雷達芯片有哪些?

感知環境的ADAS傳感器有攝像頭、超聲波傳感器和毫米波雷達和激光雷達。其中毫米波雷達是應用最廣泛的全天候核心傳感器。
2019-09-16 10:36:36

了解毫米波 -- 之一

相控陣完整發射機系統,整個系統包含本振、上變頻器、功率放大器等各個模塊,并且包含4個通道數。如此復雜的通信系統在2.1mm x 6.8 mm的芯片下即可實現,只有一粒大米大小。 圖:4通道24GHz毫米波系統
2023-05-05 11:22:19

了解毫米波“移相”--之三

,在手機頂部及側面分別部署4天線毫米波陣列,實現毫米波信號的收發功能 。 根據蘋果公司提供的數據顯示,搭載毫米波技術的iPhone 12,最高可實現4Gbps的峰值下行速率。 圖:搭載高通毫米波相控陣
2023-05-08 10:54:25

什么是5G毫米波和OTA測試?

于這一頻段,而FR2頻段的頻率范圍是24.25GHz-52.6GHz,即毫米波頻段。在毫米波頻率范圍內主要分為三個頻段,具體如下表所示, 現狀 5G毫米波多天線傳輸測試技術是實現5G性能提升的關鍵性
2021-11-19 08:00:00

以CMOS技術實現的微型化毫米波傳感器

功能的能力,從而實現了在雷達系統部署方面的全新系統配置和拓撲。例如,TI單芯片毫米波(mmWave)傳感器內的嵌入式MCU可實現射頻(RF)和模擬子系統的半自主控制。TI的CMOS傳感器為模擬組件提供
2018-11-09 16:15:36

位到毫米波無線電介紹

雙通道 AD/DA轉換器 AD9172/AD9208 應用于毫米波無線電:從位到毫米波、從毫米波到位
2021-02-19 06:36:03

低相噪毫米波頻率合成器設計

【作者】:廖梁兵;鄧賢進;張紅雨;【來源】:《信息與電子工程》2010年01期【摘要】:簡要介紹毫米波頻率合成器的重要性,分析兩種毫米波頻率合成器實現方案的優劣,綜合其優點,并采用直接數字頻率合成
2010-04-22 11:47:22

關于電磁毫米波雷達之間的影響

毫米波雷達探測人體生命體征時遇到電磁發射源正在工作,雷達回波是否會受到干擾?是不是普通的電磁都會對毫米波雷達造成一定干擾?有大佬知道的嗎?可以解答一下不?
2022-04-23 18:43:10

分享一個不錯的泰克汽車毫米波雷達測試解決方案

汽車毫米波雷達的工作原理是什么?汽車毫米波雷達的測試挑戰有哪些?泰克汽車毫米波雷達測試解決方案
2021-06-17 09:02:39

功率放大器是毫米波頻段發射機不可缺少的關鍵部件

  功率放大器是毫米波頻段發射機不可缺少的關鍵部件,輸出功率的大小決定了整個系統的作用距離和抗干擾能力。在毫米波系統中,隨著頻率的升高,單個MMIC芯片的輸出功率已經不能滿足實際的使用要求,尤其是
2019-07-04 07:09:05

哪些毫米波頻率會被5G采用呢?

信道的本質,為創新、技術的采用和普及提供了可能性。   挑戰   毫米波用于移動通信給工程師帶來了諸多挑戰,包括商用現成硅芯片的可用性、模擬組件以及其它用于開發系統的元素構建塊。這阻礙了技術的商業化
2023-05-05 09:52:51

基于毫米波傳感器的自動泊車系統怎樣去設計?

什么是毫米波雷達?為什么自動駕駛要用到這么多種類的傳感器?基于毫米波傳感器的自動泊車系統怎樣去設計?
2021-06-16 07:28:47

基于ARM的毫米波天線自動對準平臺系統

轉換成兩個簡單的水平和垂直搜索,簡化了搜索控制算法。采用基于ARM 的32 位微處理器LPC2294 進行控制,用步進電機驅動平臺和毫米波設備轉動,實現毫米波通信設備的快速準確對準。毫米波中繼通信設備
2019-06-11 06:24:10

基于DSP的毫米波主被動復合探測器目標識別系統設計【回映分享】

TMS320VC5410芯片為核心的目標識別系統,具體采用THSl030和AD7470模數轉換芯片對主被動回波進行采樣,利用SST39LF200A進行程序的存儲,并實現了系統的上電自舉加載。 研究了毫米波
2021-12-30 10:36:54

如何應對毫米波測試的挑戰?

如何應對毫米波測試的挑戰?
2021-05-10 06:44:10

如何生成和分析毫米波范圍內的寬帶數字調制信號

本應用筆記介紹了如何生成和分析毫米波范圍內的寬帶數字調制信號。Rohde&Schwarz測量設備和一些第三方現成的配件用于信號生成和分析。顯示的測量結果證明了毫米波信號在誤差矢量幅度(EVM)和相鄰信道功率(ACLR)方面的典型性能。介紹了商用V波段收發模塊的兩種測試設置及其測量結果
2018-08-01 14:36:16

將STM32芯片的晶振和毫米波雷達芯片的晶振合并成一個晶振

等等。比如,目前小編在參與一款毫米波雷達的研究,為了節約BOM成本,更大程度的降低EMC干擾。公司決定將STM32芯片的晶振和毫米波雷達芯片的晶振,合并成一個晶振。由于毫米波雷達的晶振必須為24M,因此STM32芯片的晶振也要使用24M。代碼中需要做如下修改:1、標準庫的修改方法只需下述兩步即可!(1)
2021-08-10 06:54:09

應對毫米波測試的挑戰

公司的產品目前使用的連接方式還是以波導為主。安立公司在毫米波半導體器件,微波器件,電纜和接頭方面一直有很深的研究,并且有多年的持續投入,在方面一直處于業界的領先的位置。目前毫米波在工業和消費類領域
2017-04-14 11:57:45

探一探毫米波雷達技術的發展趨勢

,打破國外壟斷,現已實現量產和供貨。去年,加特蘭也發布了其國內首款77GHz CMOS車載毫米波雷達收發芯片。數字信號處理器(DSP)數字信號處理系統也是雷達重要的組成部分,通過嵌入不同的信號處理
2018-08-03 21:40:13

教你設計單芯片毫米波雷達傳感器

,最好是將單芯片雷達視為另一種類型的傳感器。因此,當尋找一款能夠接近檢測物體、運動傳感,或進行物理測量的器件時,毫米波雷達意外當選。圖1 調頻連續的線性調頻信號通常用于76~81GHz頻段 雷達主要
2018-06-12 09:50:08

智能安防領域雷達技術應用,毫米波雷達模組,存在感應雷達發展

,遇到障礙物反射,再由接收機接收。根據收發之間的時間差測得目標的位置數據。毫米波安防雷達采FMCW技術,實現了對監測區內空間無任何間斷全程覆蓋,具有體積小、重量輕、可靠性高以及距離盲區小、無速度盲點、高
2021-08-24 16:47:09

有關毫米波雷達的檢測和角度測量

毫米波雷達是什么?毫米波雷達的基本特性有哪些呢?
2021-11-10 07:15:23

機器人應用中的毫米波雷達傳感器詳解

機器人傳感器技術使用毫米波傳感器測量對地速度使用毫米波傳感器映射和導航
2021-03-18 07:00:30

求推薦毫米波雷達

無人車避障系統射擊需要用到毫米波雷達,請問選擇哪個廠家,性能類型如何?價格10000左右吧
2018-12-25 22:13:18

淺析車載毫米波雷達

的運動速度。進一步通過多天線,多發多收以及相關算法的處理,可以實現對多個目標的距離、速度、角度的跟蹤。 車載毫米波雷達原理圖框圖 車載毫米波雷達的應用車載毫米波雷達按照不同的分類方式有著不同的劃分
2019-09-19 09:05:02

漫談車載毫米波雷達歷史

毫米波雷達芯片主要采用砷化鎵(GaAs) 工藝,一個毫米波雷達中需要至少配備7到8顆以上的RF芯片,且工作在24GHz頻段,雷達波長較長,導致毫米波雷達體積過大、過于笨重,大概有筆記本電腦體積那么大。所以
2022-03-09 10:24:55

請教一下如何進行毫米波測量?

請教一下如何進行毫米波測量?
2021-05-12 06:21:07

請問怎樣去設計一種非線性微波毫米波電路?

什么是非線性微波毫米波電路?怎樣去設計一種非線性微波毫米波電路?
2021-06-22 06:54:40

車載毫米波雷達的原理是什么?

毫米波雷達是測量被測物體相對距離、現對速度、方位的高精度傳感器,早期被應用于軍事領域,隨著雷達技術的發展與進步,毫米波雷達傳感器開始應用于汽車電子、無人機、智能交通等多個領域。
2019-08-07 08:01:28

車載毫米波雷達的技術原理與發展

集成電路已實現量產并試用中,但77GHz毫米波集成電路的國產化一直進展緩慢。國內相關產品的主要進展情況為:東南大學毫米波國家重點實驗室已完成8mm波段混頻器、倍頻器、開關、放大器等單功能芯片的研制,目前
2019-05-10 06:20:23

采用毫米波傳感器的區域占位檢測的參考設計

(EVM),并將完整的雷達處理鏈集成到 IWR1443 器件中。處理鏈包括模擬雷達配置、模數轉換器 (ADC) 捕獲、低級快速傅里葉變換 (FFT) 和信號處理特性 使用單芯片毫米波傳感器演示環境穩健
2022-09-15 08:00:30

采用毫米波來統計和追蹤人員

在某些設備中,或實現更潔凈的工業設計。  TI的毫米波傳感器還可以滿足室內人數統計應用的要求。圖1展示了毫米波傳感器的輸出示例,傳感器忽略了桌椅并同時跟蹤了多個人的位置。圖 1:由毫米波傳感器產生的室內
2018-09-25 10:37:40

采用TI毫米波技術的毫米波傳感器讓人們看的更清晰

一直以來,許多技術領先的廠商都致力于開發高度集成的雷達視覺技術,實現精準且不受環境噪音影響的效果。一架巨大的飛機在屏幕上只能呈現為一個點,那已經是過去的老舊雷達屏幕了。現如今,采用TI獨特毫米波技術
2019-03-13 06:45:11

雷達傳感器模塊,智能存在感應方案,毫米波雷達工作原理

是為了實現盲點監測和定距巡航。毫米波實質上就是電磁毫米波的頻段比較特殊,其頻率高于無線電,低于可見光和紅外線。當目標向雷達天線靠近時,反射信號頻率將高于發射機頻率;反之,當目標遠離天線而去時,反射信號
2021-10-28 15:14:21

毫米波無線通信收發系統

毫米波高速傳輸平臺基于Xilinx RFSOC-28DR及68G毫米波收發模塊組成。系統頻率60.48GHz,帶寬0.8GHz,調試方式為4-64QAM,吞吐量(峰值)為2.5Gbps,AD/DA
2022-09-28 17:42:24

基于毫米波雷達的導線弧垂監測裝置

          產品概述:        毫米波雷達是一種用于測量距離、速度和位置的高頻無源
2023-06-09 15:52:34

[3.4.2]--毫米波感知

毫米波
jf_60701476發布于 2022-11-30 14:57:27

深圳市易感人工智能毫米波雷達展示# 毫米波雷達應用

毫米波雷達
jf_87932468發布于 2023-05-20 15:05:43

已全部加載完成

主站蜘蛛池模板: 精品一区二区三区免费观看| 麻豆久久婷婷五月国产| 欧洲老妇人bb| 成人性生交大片免费看中文| 午夜片神马影院福利| 精品国产99久久久久久麻豆| 2020精品国产视| 少妇大荫蒂毛多毛大| 黄色aa大片| 99久久综合| 亚洲国产成人精品青青草原100| 久久热国产在线视频| 成a人片亚洲日本久久| 亚洲精品成人在线| 嫩草电影网嫩草影院| 国产精品永久免费视频| 5g在线视讯年龄确认海外禁止进入| 肉奴隷 赤坂丽在线播放| 精品国产成人AV在线看| a视频在线观看| 亚洲日本乱码中文论理在线电影| 欧美AAAA片免费播放观看| 国产毛片AV久久久久精品| 19不插片免费视频| 十分钟免费观看大全视频| 久久成人无码国产免费播放| 成人午夜精品久久久久久久秋霞| 一本道久久综合久久88| 日本久久久| 李亚男三级| 国产中文欧美日韩在线| 扒开老师粉嫩的泬10P| 伊人久久综合成人亚洲| 色中色最新地址登陆| 免费小视频在线观看| 黄色三级网站在线观看| 嘟嘟嘟影院免费观看视频| 777ZYZ玖玖资源站最稳定网址| 无人区免费一二三四乱码| 欧美色妞AV重囗味视频| 久久视频在线视频观看天天看视频|