現(xiàn)在大多數(shù)電子系統(tǒng)都要支持熱插拔功能,所謂熱插拔,也就是在系統(tǒng)正常工作時(shí),帶電對(duì)系統(tǒng)的某個(gè)單元進(jìn)行插拔操作,且不對(duì)系統(tǒng)產(chǎn)生任何影響。
熱插拔對(duì)系統(tǒng)的影響主要有兩方面:
其一,熱插拔時(shí),連接器的機(jī)械觸點(diǎn)在接觸瞬間會(huì)出現(xiàn)彈跳,引起電源振蕩,如下圖所示:
這個(gè)振蕩過程會(huì)引起系統(tǒng)電源跌落,引起誤碼,或系統(tǒng)重啟,也可能會(huì)引起連接器打火,引發(fā)火災(zāi)。
解決的辦法就是延遲連接器的通電時(shí)間,在連接器抖動(dòng)的那十幾毫秒內(nèi)((t1至t2)不給連接器通電,等插入穩(wěn)定后(t2后)再通電,即防抖動(dòng)延時(shí)。
其二,熱插拔時(shí),由于系統(tǒng)大容量?jī)?chǔ)能電容的充電效應(yīng),系統(tǒng)中會(huì)出現(xiàn)很大的沖擊電流,大家都知道,電容在充電時(shí),電流呈指數(shù)趨勢(shì)下降(左下圖),所以在剛開始充電的時(shí)候,其沖擊電流是非常大的。
此沖擊電流可能會(huì)燒毀設(shè)備電源保險(xiǎn)管,所以在熱插拔時(shí)必須對(duì)沖擊電流進(jìn)行控制,使其按理想的趨勢(shì)變化,如右上圖所示,圖中0~t1為電源緩啟動(dòng)時(shí)間。
綜上所述,緩啟動(dòng)電路主要的作用是實(shí)現(xiàn)兩項(xiàng)功能:
1)。防抖動(dòng)延時(shí)上電;
2)。控制輸入電流的上升斜率和幅值。
緩啟動(dòng)電路有兩種類型:電壓斜率型和電流斜率型。
電壓斜率型緩啟動(dòng)電路結(jié)構(gòu)簡(jiǎn)單,但是其輸出電流的變化受負(fù)載阻抗的影響較大,而電流斜率型緩啟動(dòng)電路的輸出電流變化不受負(fù)載影響,但是電路結(jié)構(gòu)復(fù)雜。
下面重點(diǎn)介紹電壓型緩啟動(dòng)電路。
設(shè)計(jì)中通常使用MOS管來(lái)設(shè)計(jì)緩啟動(dòng)電路的。MOS管有導(dǎo)通阻抗Rds低和驅(qū)動(dòng)簡(jiǎn)單的特點(diǎn),在周圍加上少量元器件就可以構(gòu)成緩慢啟動(dòng)電路。通常情況下,在正電源中用PMOS,在負(fù)電源中使用NMOS。
下圖是用NMOS搭建的一個(gè)-48V電源緩啟動(dòng)電路,我們來(lái)分析下緩啟動(dòng)電路的工作原理。
1).D1是嵌位二極管,防止輸入電壓過大損壞后級(jí)電路;
2).R2和C1的作用是實(shí)現(xiàn)防抖動(dòng)延時(shí)功能,實(shí)際應(yīng)用中R2一般選20K歐姆,C1選4.7uF左右;
3).R1的作用是給C1提供一個(gè)快速放電通道,要求R1的分壓值大于D3的穩(wěn)壓值,實(shí)際應(yīng)用中,R1一般選10K左右;
4).R3和C2用來(lái)控制上電電流的上升斜率,實(shí)際應(yīng)用中,R3一般選200K歐姆左右,C2取值為10 nF~100nF;
5).R4和R5的作用是防止MOS管自激振蕩,要求R4、R5lt;
6)。嵌位二極管D3的作用是保護(hù)MOS管Q1的柵-源極不被高壓擊穿;D2的作用是在MOS管導(dǎo)通后對(duì)R2、C1構(gòu)成的防抖動(dòng)延時(shí)電路和R3、C2構(gòu)成的上電斜率控制電路進(jìn)行隔離,防止MOS柵極充電過程受C1的影響。
下面來(lái)分析下該電路的緩啟動(dòng)原理:
假設(shè)MOS管Q1的柵-源極間的寄生電容為Cgs,柵-漏極間的寄生電容為Cgd,漏-源極間的寄生電容為Cds,柵-漏極外部并聯(lián)了電容C2 (C2gt;>Cgd),所以柵-漏極的總電容C’gd=C2+ Cgd,由于相對(duì)于C2 來(lái)說(shuō),Cgd的容值幾乎可忽略不計(jì),所以C’gd≈C2,MOS管柵極的開啟電壓為Vth,正常工作時(shí),MOS管柵源電壓為Vw(此電壓等于穩(wěn)壓管D3的嵌位電壓),電容C1充電的時(shí)間常數(shù)t=(R1//R2//R3)C1,由于R3通常比R1、R2大很多,所以t≈(R1//R2)C1。
下面分三個(gè)階段來(lái)分析上述電壓緩啟動(dòng)電路的工作原理:
第一階段:-48V電源對(duì)C1充電,充電公式如下。
Uc=48*R1/(R1+R2)[1-exp(-T/t)],其中T是電容C1電壓上升到Uc的時(shí)間,時(shí)間常數(shù)t=(R1//R2)C1。所以,從上電到MOS管開啟所需要的時(shí)間為:Tth=-t*ln[1-(Uc*(R1+R2)/(48*R1))]
第二階段:MOS管開啟后,漏極電流開始增大,其變化速度跟MOS管的跨導(dǎo)和柵源電壓變化率成正比,具體關(guān)系為:dIdrain/dt = gfm *dVgs/dt,其中g(shù)fm為MOS管的跨導(dǎo),是一個(gè)固定值,Idrain為漏極電流,Vgs為MOS管的柵源電壓,此期間體現(xiàn)為柵源電壓對(duì)漏源電流的恒定控制,MOS管被歸納為壓控型器件也是由此而來(lái)的。
第三階段:當(dāng)漏源電流Idrain達(dá)到最大負(fù)載電流時(shí),漏源電壓也達(dá)到飽和,同時(shí),柵源電壓進(jìn)入平臺(tái)期,設(shè)電壓幅度為Vplt。由于這段時(shí)間內(nèi)漏源電流Ids保持恒定,柵源電壓Vplt=Vth+(Ids/gfm),同時(shí),由于固定的柵源電壓使柵極電流全部通過反饋電容C’gd,則柵極電流為Ig=(Vw-Vplt)/(R3+R5),由于R5相對(duì)于R3可以忽略不計(jì),所以Ig≈(Vw-Vplt)/R3。因?yàn)闁艠O電流Ig≈Icgd,所以,Icgd=Cgd*dVgd/dt。由于柵源電壓在這段時(shí)間內(nèi)保持恒定,所以柵源電壓和漏源電壓的變化率相等。故有:dVds/dt=dVgd/dt=(Vw-Vplt)/(R3*C2)。
由此公式可以得知,漏源電壓變化斜率與R3*C2的值有關(guān),對(duì)于負(fù)載恒定的系統(tǒng),只要控制住R3*C2的值,就能控制住熱插拔沖擊電流的上升斜率。
緩啟動(dòng)階段,柵源電壓Vgs,漏源電壓Vds和漏源電流Ids的變化示意圖如下所示。
在0~t1階段,肖特基二極管D2尚未開啟,所以Vgs等于0,在這段時(shí)間內(nèi),-48V電源通過R3、R5對(duì)C2充電,等C2的電壓升高到D2的開啟電壓,MOS管的柵極電壓開始升高,等柵源電壓升高到MOS管的開啟電壓Vth時(shí),MOS管導(dǎo)通,漏源電流Ids開始增大,等MOS管的柵源電壓升高到平臺(tái)電壓Vplt時(shí),漏源電流Ids也達(dá)到最大,此時(shí),漏源電壓Vds進(jìn)入飽和,開始下降,平臺(tái)電壓Vplt結(jié)束時(shí),MOS管完全導(dǎo)通,漏源電壓降到最低,MOS管的導(dǎo)通電阻Rds最小。
在電信工業(yè)和微波電路設(shè)計(jì)領(lǐng)域,普遍使用MOS管控制沖擊電流的方達(dá)到電流緩啟動(dòng)的目的。MOS管有導(dǎo)通阻抗Rds_on低和驅(qū)動(dòng)簡(jiǎn)單的特點(diǎn),在周圍加上少量元器件就可以構(gòu)成緩慢啟動(dòng)電路。雖然電路比較簡(jiǎn)單,但只有吃透MOS管的相關(guān)開關(guān)特性后才能對(duì)這個(gè)電路有深入的理解。
本文首先從MOSFET的開通過程進(jìn)行敘述:
盡管MOSFET在開關(guān)電源、電機(jī)控制等一些電子系統(tǒng)中得到廣泛的應(yīng)用,但是許多電子工程師并沒有十分清楚的理解MOSFET開關(guān)過程,以及MOSFET在開關(guān)過程中所處的狀態(tài)一般來(lái)說(shuō),電子工程師通常基于柵極電荷理解MOSFET的開通的過程,如圖1所示此圖在MOSFET數(shù)據(jù)表中可以查到
圖1 AOT460柵極電荷特性
MOSFET的D和S極加電壓為VDD,當(dāng)驅(qū)動(dòng)開通脈沖加到MOSFET的G和S極時(shí),輸入電容Ciss充電,G和S極電壓Vgs線性上升并到達(dá)門檻電壓VGS(th),Vgs上升到VGS(th)之前漏極電流Id≈0A,沒有漏極電流流過,Vds的電壓保持VDD不變。
當(dāng)Vgs到達(dá)VGS(th)時(shí),漏極開始流過電流Id,然后Vgs繼續(xù)上升,Id也逐漸上升,Vds仍然保持VDD當(dāng)Vgs到達(dá)米勒平臺(tái)電壓VGS(pl)時(shí),Id也上升到負(fù)載電流最大值ID,Vds的電壓開始從VDD下降。
米勒平臺(tái)期間,Id電流維持ID,Vds電壓不斷降低。
米勒平臺(tái)結(jié)束時(shí)刻,Id電流仍然維持ID,Vds電壓降低到一個(gè)較低的值米勒平臺(tái)結(jié)束后,Id電流仍然維持ID,Vds電壓繼續(xù)降低,但此時(shí)降低的斜率很小,因此降低的幅度也很小,最后穩(wěn)定在Vds=Id×Rds(on)因此通常可以認(rèn)為米勒平臺(tái)結(jié)束后MOSFET基本上已經(jīng)導(dǎo)通。
對(duì)于上述的過程,理解難點(diǎn)在于為什么在米勒平臺(tái)區(qū),Vgs的電壓恒定?驅(qū)動(dòng)電路仍然對(duì)柵極提供驅(qū)動(dòng)電流,仍然對(duì)柵極電容充電,為什么柵極的電壓不上升?而且柵極電荷特性對(duì)于形象的理解MOSFET的開通過程并不直觀因此,下面將基于漏極導(dǎo)通特性理解MOSFET開通過程。
MOSFET的漏極導(dǎo)通特性與開關(guān)過程。
MOSFET的漏極導(dǎo)通特性如圖2所示MOSFET與三極管一樣,當(dāng)MOSFET應(yīng)用于放大電路時(shí),通常要使用此曲線研究其放大特性只是三極管使用的基極電流、集電極電流和放大倍數(shù),而MOSFET使用柵極電壓、漏極電流和跨導(dǎo)。
圖2 AOT460的漏極導(dǎo)通特性
三極管有三個(gè)工作區(qū):截止區(qū)、放大區(qū)和飽和區(qū),MOSFET對(duì)應(yīng)是關(guān)斷區(qū)、恒流區(qū)和可變電阻區(qū)注意:MOSFET恒流區(qū)有時(shí)也稱飽和區(qū)或放大區(qū)當(dāng)驅(qū)動(dòng)開通脈沖加到MOSFET的G和S極時(shí),Vgs的電壓逐漸升高時(shí),MOSFET的開通軌跡A-B-C-D如圖3中的路線所示
圖3 AOT460的開通軌跡
開通前,MOSFET起始工作點(diǎn)位于圖3的右下角A點(diǎn),AOT460的VDD電壓為48V,Vgs的電壓逐漸升高,Id電流為0,Vgs的電壓達(dá)到VGS(th),Id電流從0開始逐漸增大
A-B就是Vgs的電壓從VGS(th)增加到VGS(pl)的過程從A到B點(diǎn)的過程中,可以非常直觀的發(fā)現(xiàn),此過程工作于MOSFET的恒流區(qū),也就是Vgs電壓和Id電流自動(dòng)找平衡的過程,即Vgs電壓的變化伴隨著Id電流相應(yīng)的變化,其變化關(guān)系就是MOSFET的跨導(dǎo):Gfs=Id/Vgs,跨導(dǎo)可以在MOSFET數(shù)據(jù)表中查到
當(dāng)Id電流達(dá)到負(fù)載的最大允許電流ID時(shí),此時(shí)對(duì)應(yīng)的柵級(jí)電壓Vgs(pl)=Id/gFS由于此時(shí)Id電流恒定,因此柵極Vgs電壓也恒定不變,見圖3中的B-C,此時(shí)MOSFET處于相對(duì)穩(wěn)定的恒流區(qū),工作于放大器的狀態(tài)
開通前,Vgd的電壓為Vgs-Vds,為負(fù)壓,進(jìn)入米勒平臺(tái),Vgd的負(fù)電壓絕對(duì)值不斷下降,過0后轉(zhuǎn)為正電壓驅(qū)動(dòng)電路的電流絕大部分流過CGD,以掃除米勒電容的電荷,因此柵極的電壓基本維持不變Vds電壓降低到很低的值后,米勒電容的電荷基本上被掃除,即圖3中的C點(diǎn),于是,柵極的電壓在驅(qū)動(dòng)電流的充電下又開始升高,如圖3中的C-D,使MOSFET進(jìn)一步完全導(dǎo)通
C-D為可變電阻區(qū),相應(yīng)的Vgs電壓對(duì)應(yīng)著一定的Vds電壓Vgs電壓達(dá)到最大值,Vds電壓達(dá)到最小值,由于Id電流為ID恒定,因此Vds的電壓即為ID和MOSFET的導(dǎo)通電阻的乘積
基于MOSFET的漏極導(dǎo)通特性曲線可以直觀的理解MOSFET開通時(shí),跨越關(guān)斷區(qū)、恒流區(qū)和可變電阻區(qū)的過程米勒平臺(tái)即為恒流區(qū),MOSFET工作于放大狀態(tài),Id電流為Vgs電壓和跨導(dǎo)乘積
電路原理詳細(xì)說(shuō)明:
MOS管是電壓控制器件,其極間電容等效電路如圖4所示。
圖4. 帶外接電容C2的N型MOS管極間電容等效電路
MOS管的極間電容柵漏電容Cgd、柵源電容Cgs、漏源電容Cds可以由以下公式確定:
公式中MOS管的反饋電容Crss,輸入電容Ciss和輸出電容Coss的數(shù)值在MOS管的手冊(cè)上可以查到。
電容充放電快慢決定MOS管開通和關(guān)斷的快慢,Vgs首先給Cgs 充電,隨著Vgs的上升,使得MOS管從截止區(qū)進(jìn)入可變電阻區(qū)。進(jìn)入可變電阻區(qū)后,Ids電流增大,但是Vds電壓不變。隨著Vgs的持續(xù)增大,MOS管進(jìn)入米勒平臺(tái)區(qū),在米勒平臺(tái)區(qū),Vgs維持不變,電荷都給Cgd 充電,Ids不變,Vds持續(xù)降低。在米勒平臺(tái)后期,MOS管Vds非常小,MOS進(jìn)入了飽和導(dǎo)通期。為確保MOS管狀態(tài)間轉(zhuǎn)換是線性的和可預(yù)知的,外接電容C2并聯(lián)在Cgd上,如果外接電容C2比MOS管內(nèi)部柵漏電容Cgd大很多,就會(huì)減小MOS管內(nèi)部非線性柵漏電容Cgd在狀態(tài)間轉(zhuǎn)換時(shí)的作用,另外可以達(dá)到增大米勒平臺(tái)時(shí)間,減緩電壓下降的速度的目的。外接電容C2被用來(lái)作為積分器對(duì)MOS管的開關(guān)特性進(jìn)行精確控制。控制了漏極電壓線性度就能精確控制沖擊電流。
電路描述:
圖5所示為基于MOS管的自啟動(dòng)有源沖擊電流限制法電路。MOS管 Q1放在DC/DC電源模塊的負(fù)電壓輸入端,在上電瞬間,DC/DC電源模塊的第1腳電平和第4腳一樣,然后控制電路按一定的速率將它降到負(fù)電壓,電壓下降的速度由時(shí)間常數(shù)C2*R2決定,這個(gè)斜率決定了最大沖擊電流。
C2可以按以下公式選定:
R2由允許沖擊電流決定:
其中Vmax為最大輸入電壓,Cload為C3和DC/DC電源模塊內(nèi)部電容的總和,Iinrush為允許沖擊電流的幅度。
圖5 有源沖擊電流限制法電路
D1是一個(gè)穩(wěn)壓二極管,用來(lái)限制MOS管 Q1的柵源電壓。元器件R1,C1和D2用來(lái)保證MOS管Q1在剛上電時(shí)保持關(guān)斷狀態(tài)。具體情況是:
上電后,MOS管的柵極電壓要慢慢上升,當(dāng)柵源電壓Vgs高到一定程度后,二極管D2導(dǎo)通,這樣所有的電荷都給電容C1以時(shí)間常數(shù)R1×C1充電,柵源電壓Vgs以相同的速度上升,直到MOS管Q1導(dǎo)通產(chǎn)生沖擊電流。
以下是計(jì)算C1和R1的公式:
其中Vth為MOS管Q1的最小門檻電壓,VD2為二極管D2的正向?qū)▔航担琕plt為產(chǎn)生Iinrush沖擊電流時(shí)的柵源電壓。Vplt可以在MOS管供應(yīng)商所提供的產(chǎn)品資料里找到。
MOS管選擇
以下參數(shù)對(duì)于有源沖擊電流限制電路的MOS管選擇非常重要:
l 漏極擊穿電壓 Vds
必須選擇Vds比最大輸入電壓Vmax和最大輸入瞬態(tài)電壓還要高的MOS管,對(duì)于通訊系統(tǒng)中用的MOS管,一般選擇Vds≥100V。
l 柵源電壓Vgs
穩(wěn)壓管D1是用來(lái)保護(hù)MOS管Q1的柵極以防止其過壓擊穿,顯然MOS管Q1的柵源電壓Vgs必須高于穩(wěn)壓管D1的最大反向擊穿電壓。一般MOS管的柵源電壓Vgs為20V,推薦12V的穩(wěn)壓二極管。
l 導(dǎo)通電阻Rds_on.
MOS管必須能夠耗散導(dǎo)通電阻Rds_on所引起的熱量,熱耗計(jì)算公式為:
其中Idc為DC/DC電源的最大輸入電流,Idc由以下公式確定:
其中Pout為DC/DC電源的最大輸出功率,Vmin為最小輸入電壓,η為DC/DC電源在輸入電壓為Vmin輸出功率為Pout時(shí)的效率。η可以在DC/DC電源供應(yīng)商所提供的數(shù)據(jù)手冊(cè)里查到。MOS管的Rds_on必須很小,它所引起的壓降和輸入電壓相比才可以忽略。
圖6. 有源沖擊電流限制電路在75V輸入,DC/DC輸出空載時(shí)的波形
設(shè)計(jì)舉例
已知:Vmax=72V
Iinrush=3A
選擇MOS管Q1為IRF540S
選擇二極管D2為BAS21
按公式(4)計(jì)算:C2》》1700pF。選擇 C2=0.01μF;
按公式(5)計(jì)算:R2=252.5kW。選擇 R2=240kW,選擇R3=270W《《R2;
按公式(7)計(jì)算:C1=0.75μF。選擇 C1=1μF;
按公式(8)計(jì)算:R1=499.5W。選擇 R1=1kW
圖6所示為圖5 電路的實(shí)測(cè)波形,其中DC/DC電源輸出為空載。
審核編輯 :李倩
評(píng)論
查看更多