200W開關電源功率級設計方案(3)
圖2是雙管正激變換器。在這個應用中,FAN4800的PWM部分運作在電流模式,控制一個雙管正激變換器。這個拓撲基本上和熟知的單管正激變換器相同。但它的優點是,兩晶體管中的任何一個漏極電壓只需要等於PFC的直流輸出電壓。相比之下,標準正激變換器需求兩倍大小的漏極電壓,差不多800-900V。此外,對於雙管正激變換器,變壓器構造簡單,便宜,因為它不需要復位繞組。
當然有缺點需要考慮∶使用的拓撲需要兩個晶體管,其中一個的門極電壓懸浮于高電壓。如果細看,這些問題都不是大問題,因為功率MOSFET 的導通阻抗正比於漏極電壓,為2至2.5 倍。這意味著兩個晶體管,只須有一半耐電壓同時只有一半導通阻抗,即可使用更少的矽面積得到相同的傳導功耗。所以兩種解決方案的成本是相似的。
因為使用了門極驅動器FAN7382,第二缺點也沒有了。這個器件包含一個完全獨立的低端和高端門極驅動器。這是很重要的,因為在雙管正激變換器中,所有的晶體管同時關閉和導通。當導通時,能量轉移到次級;當關閉時,變壓器經復位二極管D217和D218被去磁化。
對於雙管和單管正激來說,主要設計等式完全相同,所以飛兆半導體應用說明AN-4137及其相關的電子數據表,如圖3所示 [2],可用於考慮一些變化後的計算。由於變換器直流電壓由一個PFC預調節器產生,填入電子數據表的線路電壓須選擇適當,以獲得正確的直流電壓。在這個應用中,284VRMS用於兩個最低和最高線電壓。線頻率并不影響計算。
接下來,考量 直流母線電容大小(例如1000uF),因為使用到PFC,實際直流母線電容器兩端的紋波電壓相當小。
最高占空比也須嚴格小於0.5,允許變壓器去磁化。為了留下一些馀量,最大占空比選擇為0.45。
由於已經有了單個晶體管正激的表單,np/nr比(Excel:Np/Nr)和最大額定MOSFET電壓可以忽略。
輸出濾波電感L5的電流紋波因素Krf 的選擇,通常是一個反復的過程。一方面,想使這個因素盡可能小,以減少初級和次級電流的RMS 和峰值。另一方面,L5 不得過大。因此,開始假設一個紋波因素,然後檢查L5的配置結果是否可以接受。在這次設計中,KRF值為0.21,L5的計算電感為40μH。計算的繞組將完全填補一個EER2828磁環。根據選擇的KRF,通過Q205和Q206的電流的RSM和峰值如下∶
如前所述,最高漏極電壓稍微大於400V足夠了,能有效使用額定電壓為500V MOSFET。其次,輸出建議使用600V MOSFET, 而不是一個浪涌電壓限制器。SUPERFETTM FCP7N60具有下列數據
功耗能夠很容易得到,與計算Q1功耗類似。
這里給出了一個功耗上限值。在實際中,勵磁電感的諧振和節電輸出電容使電壓降低到400V以下,Q206的功耗當然是完全相同的。每一個MOSFET需要一個最大熱阻為20℃/W的散熱器。
電流感應電阻R233的值是這樣選擇的,最大峰值電流可能超過1.6A。如果電阻值為0.56Ω,這個條件實現了但沒有馀量。出於這個原因,選擇0.47Ω電阻,此時最大峰值電流為2.1A。
電感L5,變壓器,二次整流和濾波,都可以根據Excel表計算。在工作表給出的變壓器AP等式的幫助下,為變壓器選擇了一個EER2834磁環,繞組數據可在附錄中查到。整流二極管的反向電壓計算值是57V,但是推薦使用一個指定最大電壓至少100V的整流二極管。為了減少傳導和開關損耗,最好使用肖特基二極管。RMS電流負載在電子數據表中給出,可以用來確定二極管;實際選擇的是兩個FYP2010DN二極管。整流二極管D219和D220的平均電流為∶
確定功耗的方法與BR1和D1的方法相同。
再次,每個二極管使用的散熱器熱阻不超過20℃/W。
- 第 1 頁:200W開關電源功率級設計方案(1)
- 第 2 頁:電感L1#
- 第 3 頁:雙管正激變換器#
- 第 4 頁:DC/DC 變換器#
本文導航
非常好我支持^.^
(0) 0%
不好我反對
(0) 0%
相關閱讀:
- [開關電源] PSR原邊反饋開關電源變壓器設計 2011-04-25
- [開關電源電路] TEA1753T開關電源應用電路 2011-04-19
- [開關電源] 降壓型開關電源的電感的正確選擇 2011-04-12
- [開關電源] 開關電源控制環路如何設計 2011-04-09
- [電源電路圖] 簡單實用的開關電源電路 2011-03-28
- [開關電源] 開關電源設計中如何減小EMI 2011-03-24
- [電源設計應用] 開關電源EMI整改頻段干擾原因及抑制辦法 2011-03-17
- [電源設計應用] 國外高端1200W工頻逆變器(圖解) 2011-03-01
( 發表人:Spring )