一進(jìn)課堂我就指出,由于晶體管是一種單象限器件,我們首先需要將它偏置在有源區(qū)域中的一個(gè)合適的工作點(diǎn)。“你愛(ài)咋說(shuō)就咋說(shuō)吧”,學(xué)生們似乎在用無(wú)聲的語(yǔ)言應(yīng)付我。
接著我們必須保持工作點(diǎn)的變化足夠小,以確保小信號(hào)近似法有效。同樣,大家的反應(yīng)仍然是“你愛(ài)咋說(shuō)就咋說(shuō)吧”。最后,我們必須用電容進(jìn)行交流耦合和去耦。現(xiàn)在甚至連“你愛(ài)咋說(shuō)就咋說(shuō)吧”的反應(yīng)都沒(méi)有了。我試圖通過(guò)粗略地分析圖1所示的電路來(lái)證明上述觀點(diǎn),但意識(shí)到我的努力是多么的無(wú)意義,只好無(wú)奈地說(shuō),今天的課就到這兒吧。
學(xué)生們齊刷刷地站起來(lái),翻看著手機(jī)里的短信,還沒(méi)等我拿到黑板擦并轉(zhuǎn)過(guò)身來(lái)說(shuō)再見(jiàn),他們就一窩蜂地走了……
圖1:不應(yīng)該在開(kāi)春第一天討論的電路。
看著空蕩蕩的教室,我尋思:如果晶體管是四象限器件而不是單象限器件,我的教學(xué)和學(xué)生的學(xué)習(xí)將會(huì)變得多么容易。目前沒(méi)有這樣的器件,但是我們可以用一些晶體管來(lái)進(jìn)行模擬。
偽理想的雙極結(jié)型晶體管
雙極結(jié)型晶體管(BJT)是一種常開(kāi)器件,要求基極-發(fā)射極電壓下降0.6-0.7V才能抽取足夠的電流。我們喜歡用圖2a所示的npn BJT,一旦將vB提高到0V以上,這種BJT就會(huì)抽取明顯的電流。用射極跟隨器Q3的E-B壓降補(bǔ)償Q1的B-E壓降可以滿足這個(gè)要求,如圖2b所示。忽略基極電流,可以得到:
圖2:對(duì)理想晶體管的逐步探索。
其中Is1和Is3是飽和電流,假設(shè)它們相等,VT是熱電壓。
為了確保圍繞vB=0的對(duì)稱操作,我們需要用圖2c中的Q2-Q4對(duì)補(bǔ)償Q1-Q3對(duì)。再次假設(shè)飽和電流相匹配,同時(shí)忽略基極電流,可以得到公式(1)的對(duì)稱表達(dá)式:
最后,為了完成對(duì)偽理想BJT的探索,我們需要接受差異。
圖3:最后一步,形成四象限晶體管,同時(shí)顯示了一種電路符號(hào)。
我們通過(guò)將兩個(gè)電流反射鏡的輸出連接在一起來(lái)完成這個(gè)任務(wù),圖3的示例是威爾遜電流反射鏡。Q5-Q6-Q7反射鏡復(fù)制iC1,并將iC1引入輸出節(jié)點(diǎn),而Q8-Q9-Q10反射鏡復(fù)制iC2,然后從輸出節(jié)點(diǎn)吸收iC2。在vB=0時(shí),公式(3)的指數(shù)相互抵消,使iC=0。當(dāng)vB》0時(shí),iC1占優(yōu)勢(shì),導(dǎo)致iC》0,而當(dāng)vB 《 0時(shí),iC2占優(yōu)勢(shì),導(dǎo)致iC 《 0。很明顯,這個(gè)電路允許完整的四象限操作。另外,鑒于Q3和Q4射極跟隨器提供的達(dá)靈頓功能,該電路具有高輸入阻抗,它同時(shí)還因威爾遜反射鏡而具有高輸出阻抗。
這種偽理想BJT其實(shí)已經(jīng)面世很長(zhǎng)一段時(shí)間了。它曾被稱為飽和電抗器、宏晶體管、鉆石晶體管和電流傳送器II+,也有IC形式的OPA861。圖4表明,如果圖1中的放大器用飽和電抗器實(shí)現(xiàn)的話,會(huì)是多么簡(jiǎn)單。注意,圖1中的放大器提供信號(hào)反相功能,而圖3中的放大器是非反相類(lèi)型。
圖4:用飽和電抗器實(shí)現(xiàn)的共發(fā)射極放大器。
電流反饋放大器(CFA)
眾所周知,使用負(fù)反饋技術(shù)可以極大地?cái)U(kuò)展放大器的應(yīng)用范圍,基于飽和電抗器的放大器也不例外。由于飽和電抗器具有高輸出阻抗,因此需要使用一個(gè)輸出緩沖器來(lái)防止被反饋網(wǎng)絡(luò)加載。這就形成了圖5的電路,其中由Q11到Q14組成的輸出緩沖器與輸入緩沖器Q1到Q4非常類(lèi)似。這個(gè)電路被稱為電流反饋放大器,它同樣已經(jīng)面世很長(zhǎng)時(shí)間了,在某些高速應(yīng)用中可替代傳統(tǒng)的運(yùn)放。普通BJT是通過(guò)將集電極和基極之間的反饋網(wǎng)絡(luò)連接起來(lái)配置反饋操作,飽和電抗器的非反相特性則要求反饋網(wǎng)絡(luò)連接在(緩沖的)集電極和發(fā)射極之間,也就是圖5所示的vO和vN節(jié)點(diǎn)之間。
為了研究反饋操作原理,參考圖6a所示簡(jiǎn)化后的等效電路,圖中明確地顯示了C節(jié)點(diǎn)到地之間的凈阻抗zc(因?yàn)楹芸鞎?huì)變得清晰,所以C節(jié)點(diǎn)也被稱為增益節(jié)點(diǎn))。針對(duì)第一近似值,zc可以用電阻Rc并聯(lián)電容Cc來(lái)建模,因此擴(kuò)展為:
一般來(lái)說(shuō),Rc在105~106Ω范圍內(nèi),Cc在pF范圍內(nèi)。由于外部網(wǎng)絡(luò)造成的任何失衡電流In都將被C節(jié)點(diǎn)處的威爾遜反射鏡所復(fù)制,從而得到:
圖5:使用輸出緩沖器將飽和電抗器轉(zhuǎn)換為電流反饋放大器。
接下來(lái)看一看圖6b中典型的反饋互連,將電流集中到Vn節(jié)點(diǎn)可以得到:
令Vn=Vp=Vi,求解In,然后代入到公式(5)就能得到閉環(huán)電壓增益:
圖6(a):簡(jiǎn)化的電流反饋放大器等效電路;(b):電流反饋放大器符號(hào)和作為同相放大器的負(fù)反饋操作的互連電路。
在精心設(shè)計(jì)的電路中,R2的值大約為103Ω,因此當(dāng)Rc在105~106Ω范圍內(nèi)時(shí),我們可以忽略直流時(shí)的R2/zc項(xiàng),并確定在低頻時(shí)A傾向于大家熟悉的運(yùn)放表達(dá)式:
與普通運(yùn)放(也稱為電壓反饋放大器或VFA)相比,電流反饋放大器的優(yōu)點(diǎn)是快速動(dòng)態(tài)變化。公式(6)表明這個(gè)電路的環(huán)路增益為:
因此閉環(huán)帶寬由|zc|=R2點(diǎn)的頻率給出,這個(gè)頻率也稱為交叉頻率fx。只要R2 《《 Rc,這個(gè)頻率就等于fx=1/(2πR2Cc)。當(dāng)R2近似于103Ω,Cc近似于10–12F時(shí),fx大約是108Hz。請(qǐng)注意,fx取決于R2,與R1無(wú)關(guān)。與fx反比于噪聲增益1+R2/R1的電壓反饋放大器相比,電流反饋放大器的fx似乎獨(dú)立于噪聲增益。電流反饋放大器的另外一個(gè)動(dòng)態(tài)優(yōu)勢(shì)是不受擺率限制的影響,因?yàn)镃c直接受輸入緩沖器的驅(qū)動(dòng),而輸入緩沖器實(shí)際上可以提供任何電流來(lái)實(shí)現(xiàn)Cc的快速充放電。
回到電壓反饋放大器(VFA)
不得不承認(rèn),我們已經(jīng)習(xí)慣了電壓反饋放大器,在輸入端子間直接出現(xiàn)緩沖器會(huì)讓我們很不舒服(這是我第一次碰到電流反饋放大器時(shí)的真實(shí)感覺(jué))。誠(chéng)然,電流反饋放大器的快速動(dòng)態(tài)變化非常吸引人……有沒(méi)有可能,將電流反饋放大器修改成電壓反饋放大器,并保留原始電流反饋放大器的一些動(dòng)態(tài)優(yōu)勢(shì)?這個(gè)問(wèn)題也在很早以前就解決了,方法是增加第三個(gè)電壓緩沖器(見(jiàn)圖7的Q15-Q16-Q17-Q18),將節(jié)點(diǎn)vN轉(zhuǎn)換為高阻輸入,并在第一個(gè)緩沖器的輸出端之間增加一個(gè)電阻R,這個(gè)新的緩沖器可以產(chǎn)生上文提到的iN控制電流。
圖7:由電流反饋放大器派生出來(lái)的電壓反饋放大器。
現(xiàn)在來(lái)分析這個(gè)電路,考慮流經(jīng)R的電流,假設(shè)從左流到右,值為(Vp–Vn)/R。電流反射鏡將這個(gè)電流傳送到增益節(jié)點(diǎn)C,并在此節(jié)點(diǎn)產(chǎn)生電壓zc(Vp–Vn)/R。這個(gè)電壓再經(jīng)緩沖輸出到輸出節(jié)點(diǎn),得到Vo,因此開(kāi)環(huán)電壓增益為:
這里用到了公式(4)。同樣,在一個(gè)精心設(shè)計(jì)的電路中,R 《《 Rc,意味著a有大的直流值。由于其固有的快速電流模式操作,這種運(yùn)放類(lèi)型特別適合高速應(yīng)用。常見(jiàn)的例子是LT1363-70MHz、1000V/μs運(yùn)放。
總結(jié)
在尋求理想晶體管的過(guò)程中,我們重新發(fā)現(xiàn)了一些早已存在的電路。這提醒我們:當(dāng)你想要發(fā)明什么時(shí),是不是要先想想這樣一句格言,“每一樣可以被發(fā)明的東西早就已經(jīng)發(fā)明了”?
責(zé)任編輯:gt
評(píng)論
查看更多