變頻器對電機影響的解決方法
一、普通異步電動機都是按恒頻恒壓設計的,不可能完全適應變頻調速的要求。
以下為變頻器對電機的影響
1、電動機的效率和溫升的問題
不論那種形式的變頻器,在運行中均產生不同程度的諧波電壓和電流,使電動機在非正弦電壓、電流下運行。拒資料介紹,以目前普遍使用的正弦波PWM型變頻器為例,其低次諧波基本為零,剩下的比載波頻率大一倍左右的高次諧波分量為:2u+1(u為調制比)。
高次諧波會引起電動機定子銅耗、轉子銅(鋁)耗、鐵耗及附加損耗的增加,最為顯著的是轉子銅(鋁)耗。因為異步電動機是以接近于基波頻率所對應的同步轉速旋轉的,因此,高次諧波電壓以較大的轉差切割轉子導條后,便會產生很大的轉子損耗。除此之外,還需考慮因集膚效應所產生的附加銅耗。這些損耗都會使電動機額外發熱,效率降低,輸出功率減小,如將普通三相異步電動機運行于變頻器輸出的非正弦電源條件下,其溫升一般要增加10%--20%。
2、電動機絕緣強度問題
目前中小型變頻器,不少是采用PWM的控制方式。他的載波頻率約為幾千到十幾千赫,這就使得電動機定子繞組要承受很高的電壓上升率,相當于對電動機施加陡度很大的沖擊電壓,使電動機的匝間絕緣承受較為嚴酷的考驗。另外,由PWM變頻器產生的矩形斬波沖擊電壓疊加在電動機運行電壓上,會對電動機對地絕緣構成威脅,對地絕緣在高壓的反復沖擊下會加速老化。
3、諧波電磁噪聲與震動
普通異步電動機采用變頻器供電時,會使由電磁、機械、通風等因素所引起的震動和噪聲變的更加復雜。變頻電源中含有的各次時間諧波與電動機電磁部分的固有空間諧波相互干涉,形成各種電磁激振力。當電磁力波的頻率和電動機機體的固有振動頻率一致或接近時,將產生共振現象,從而加大噪聲。由于電動機工作頻率范圍寬,轉速變化范圍大,各種電磁力波的頻率很難避開電動機的各構件的固有震動頻率。
4、電動機對頻繁啟動、制動的適應能力
由于采用變頻器供電后,電動機可以在很低的頻率和電壓下以無沖擊電流的方式啟動,并可利用變頻器所供的各種制動方式進行快速制動,為實現頻繁啟動和制動創造了條件,因而電動機的機械系統和電磁系統處于循環交變力的作用下,給機械結構和絕緣結構帶來疲勞和加速老化問題。
5、低轉速時的冷卻問題
首先,異步電動機的阻抗不盡理想,當電源頻率較底時,電源中高次諧波所引起的損耗較大。其次,普通異步電動機再轉速降低時,冷卻風量與轉速的三次方成比例減小,致使電動機的低速冷卻狀況變壞,溫升急劇增加,難以實現恒轉矩輸出。
二、變頻電動機的特點
1、電磁設計
對普通異步電動機來說,再設計時主要考慮的性能參數是過載能力、啟動性能、效率和功率因數。而變頻電動機,由于臨界轉差率反比于電源頻率,可以在臨界轉差率接近1時直接啟動,因此,過載能力和啟動性能不在需要過多考慮,而要解決的關鍵問題是如何改善電動機對非正弦波電源的適應能力。方式一般如下:
1) 盡可能的減小定子和轉子電阻。減小定子電阻即可降低基波銅耗,以彌補高次諧波引起的銅耗增
2)為抑制電流中的高次諧波,需適當增加電動機的電感。但轉子槽漏抗較大其集膚效應也大,高次諧波銅耗也增大。因此,電動機漏抗的大小要兼顧到整個調速范圍內阻抗匹配的合理性。
3)變頻電動機的主磁路一般設計成不飽和狀態,一是考慮高次諧波會加深磁路飽和,二是考慮在低頻時,為了提高輸出轉矩而適當提高變頻器的輸出電壓。
2、結構設計
再結構設計時,主要也是考慮非正弦電源特性對變頻電機的絕緣結構、振動、噪聲冷卻方式等方面的影響,一般注意以下問題:
1)絕緣等級,一般為F級或更高,加強對地絕緣和線匝絕緣強度,特別要考慮絕緣耐沖擊電壓的能力。
2)對電機的振動、噪聲問題,要充分考慮電動機構件及整體的剛性,盡力提高其固有頻率,以避開與各次力波產生共振現象。
3)冷卻方式:一般采用強迫通風冷卻,即主電機散熱風扇采用獨立的電機驅動。
4)對恒功率變頻電動機,當轉速超過3000/min時,應采用耐高溫的特殊潤滑脂,以補償軸承的溫度升高。
變頻電機可在0。1HZ--130HZ范圍長期運行,
普通電機可在:2極的為20--65hz范圍長期運行.
4極的為25--75hz范圍長期運行.
6極的為30--85hz范圍長期運行.
8極的為35--100hz范圍長期運行
5)防止軸電流措施,對容量超過160KW電動機應采用軸承絕緣措施。主要是易產生磁路不對稱,也會產生軸電流,當其他高頻分量所產生的電流結合一起作用時,軸電流將大為增加,從而導致軸承損壞,所以一般要采取絕緣措施。
非常好我支持^.^
(0) 0%
不好我反對
(0) 0%
相關閱讀:
- [模擬技術] 淺談交流變頻器系統的抗干擾性和干擾性 2011-08-04
- [數字電路圖] IPM模塊實現通用變頻器實用電路 2011-08-04
- [新品快訊] 瑞薩電子開發出100A大電流功率MOSFET 2011-07-29
- [控制技術] 步進電機控制芯片與驅動電路 2011-07-27
- [FPGA/ASIC技術] 基于FPGA和DSP的高壓變頻器中性點偏移技術的算法 2011-07-26
- [電源設計應用] DC-DC電機伺服驅動專用電源設計 2011-07-16
- [測量儀表] 發電機組絕緣電阻的測量方法 2011-07-12
- [控制技術] PLC控制伺服電機準確定位的方法 2011-07-12
( 發表人:小蘭 )